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Introduction

Glioblastoma is a kind of primary malignant tu-
mor with a high incidence in adults. Its invasive growth 
and strong invasiveness often lead to difficult surgi-
cal treatment, poor prognosis and easy recurrence. 
In order to prolong the survival time of glioma pa-
tients and improve their quality of life, a reason-
able and effective anti-glioma treatment is essential (1). 
Except for a few gliomas that can spread in the subarach-
noid space, there is no extracranial metastasis. However, 
due to the invasive growth mode of malignant glioma, 
which is destructive to the nerve tissue, the operation can 
not be completely removed, and the patient is still fac-
ing the threat of death (1-2). Surulescu proposed a multi-
scale model of glioma growth, including the interaction 
between cells and the underlying tissue network and the 
proliferation effect. Diffusion tensor imaging (DTI) can 
provide this information, which opens the way for the spe-
cific modeling of glioma invasion. Starting from a multi-
scale model including subcellular and single cell dynam-
ics, surulescu performs parabolic scaling to obtain the ap-
proximate reaction-diffusion-transport equation of tumor 
cell population at the macro scale. Numerical simulation 
was conducted based on DTI data to evaluate the perfor-
mance of surulescu's modeling method (3-4). Kim found 

that arsenic trioxide significantly upregulated trail death 
receptor DR5 in glioma cells. The results of the arsenic tri-
oxide study suggest that arsenic trioxide plus TRAIL com-
bined with glioma cells may be an effective and selective 
treatment strategy (5-6). The purpose of his study was to 
investigate the expression of neat1 in human gliomas and 
its relationship with clinicopathological features and prog-
nosis, and to analyze the relationship between the expres-
sion of lncrna neat1 and clinicopathological features and 
prognosis of gliomas. He's research supports neat1 as a 
potential prognostic predictor, its high expression in tumor 
tissues and its relationship with glioma carcinogenesis and 
progression (7-8). The purpose of Ping's study was to in-
vestigate the role of cznf292 in the formation of human 
glioma tubes and its possible mechanism. Ping's research 
shows that cznf292 silencing plays an important role in the 
process of glioma tube formation and has the potential as 
a therapeutic target and biomarker of glioma (9-10). Chai 
explored the possibility of plasma mir-199a-3p as a bio-
marker of glioma. Chai found that the overall survival rate 
of glioma patients with low mir-199a-3p expression levels 
was significantly shorter than that of patients with high 
mir-199a-3p expression levels. Univariate and multivari-
ate analysis showed that mir-199a-3p expression was an 
independent predictor of poor prognosis, and circulating 
mir-199a-3p could be used as a new biomarker for diagno-
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sis and prognosis of glioma (11-12).
Nuclear magnetic resonance (NMR) is a useful tool for 

elucidating the chemical structure, molecular dynamics 
and interaction of compounds from organic molecules to 
mineral and protein complexes (13). W ü RTZ focuses on 
the application of Mr metabonomics in large-scale epide-
miological quantitative circulation biomarkers. W ü RTZ 
emphasized the molecular characteristics of risk factors, 
the application of Mendelian randomization, and the key 
issues in the design and analysis of epidemiological meta-
bolic profiling. W ü RTZ believes that although the large-
scale application of metabolic profiling is still a new field, 
comprehensive biomarker data seem to contribute to the 
ability to understand the etiology of various diseases and 
predict disease risk and may be transformed into multiple 
clinical environments (14-15). Napoli used nuclear mag-
netic resonance spectroscopy to study the urine metabolic 
spectrum of patients with PDAC and to detect changes in 
metabolic spectrum compared with healthy matched con-
trols. The spectral data were analyzed by multivariate sta-
tistical technique. Napoli successfully identified the com-
plex molecular characteristics of PDAC by using the NMR 
analysis of the urine metabolic spectrum. The results of the 
descriptive level analysis showed that it was possible to 
track the evolution of the disease and locate the tumor. Giv-
en the high repeatability and noninvasive nature of analyt-
ical procedures, Napoli's method has the potential to influ-
ence large-scale screening procedures (16-17). Liu studied 
the carbon skeleton characteristics of ultra-fine pulverized 
coal by nuclear magnetic resonance (NMR) and c-13nmr 
and studied the changes of coal chemical properties after 
demineralization. Liu's research shows that in the process 
of coal pulverization, the research of molecular structure 
is helpful to better understand the molecular structure of 
coal, and the data obtained will promote the development 
of a typical molecular model of ultra-fine pulverized coal 
and improve its behavior prediction ability in practical ap-
plication (18-19). Flote measured fasting blood lipid and 
body mass index (BMI) of 56 female patients aged 35-75 
years who were newly diagnosed as stage I / II invasive 
breast cancer. Flote was used to determine the contents of 
serum lipoprotein subfractions and their cholesterol, free 
cholesterol, phospholipids, apolipoprotein A1 and apoli-
poprotein A2. Flote's results hypothesized the correlation 
between different lipoprotein subfractions, PGR expres-
sion and Ki 67% in breast tumors (20-21). Through the 
combination of the permeability test and nuclear magnetic 
resonance test, Lai analyzed the core samples with the 
tight fluid flow at the pore scale level. Lai has an impor-
tant understanding of fluid flow in dense porous media 
through detailed research on imbibition experiments and 
nuclear magnetic resonance tests (22-23). Yuan discussed 
the significance of MRI combined with Ki-67 and vascular 
endothelial growth factor in the diagnosis and prognosis 
evaluation of glioma. Yuan's research shows that the three 
combined detections can not only accurately judge the ma-
lignant degree of glioma but also effectively evaluate the 
prognosis of patients, providing a scientific basis for the 
selection of treatment schemes (24-25).

Radiation therapy can cause DNA damage, and DNA 
damage can promote cell apoptosis if there is a linear cor-
relation between the changes of metabolites measured by 
nuclear magnetic resonance spectroscopy and DNA dam-
age. The results of this study not only further suggest that 

as a noninvasive method, hydrogen magnetic resonance 
spectroscopy can reflect the degree of DNA damage after 
radiotherapy to a certain extent but also can predict cell 
apoptosis. To analyze the inhibitory effect of nano-target-
ed micelles combined with in vitro radiotherapy on glioma 
by nuclear magnetic resonance (NMR) technology so as to 
provide the basis for clinical radiotherapy effect monitor-
ing and lay a theoretical foundation for the formulation of 
a clinical individualized radiotherapy scheme.

Materials and Methods

Experimental materials and cell culture
Glioma cell lines: C6 from rats, U87 and u25l from the 

human. The three cell lines were purchased from the cell 
resource center of the Municipal Institute of life sciences 
and stored in the cell room on the third floor of a labora-
tory in our city. C6 originated from rats and belonged to 
low-grade gliomas; U87 and U251 originated from human 
and belonged to high-grade glioma.

The cells were cultured in the culture bottle. The 
growth of the cells was observed regularly. When the me-
dium turned yellow, the medium changed in time. When 
the cells grew to about 80% density, the cells were pas-
saged. The cells were subcultured in the biosafety cabinet. 
The medium was sucked out by the pasteurized pipette 
and discarded. The cells were washed twice with sterile 
room temperature PBS. Then, about LML 0.25% trypsin 
was added into each small culture bottle. After standing, 
the cells were digested. After a few minutes, the cells were 
separated from the bottom of the culture bottle and sus-
pended in the culture medium. The cell suspension was as-
pirated for centrifugation, and then the cells were precipi-
tated. The medium was added, and the pasteurized pipette 
was fully blown to form a single cell suspension, which 
was put into a new culture bottle for culture. According to 
the cell growth rate and cell concentration, the single cell 
suspension was divided into two or four vials for later use.

Detection of apoptosis rate by flow cytometry and sta-
tistical analysis

24h after cell irradiation, when the density grows to 
about 80%, collect the cells, trypsin digestion and centri-
fuge to take the cell pellet, wash the cells twice with fro-
zen PBS; resuspend the cells with binding buffer, adjust 
the concentration to 1.0×106/ml, and then draw 100ul Cell 
suspension into a 5ml test tube; add 5ul FITC-Annexin 
and 5ul PI, incubate at room temperature, protected from 
light for 15min, then place the sample in a 4"C refrigera-
tor and wrap it with aluminum foil to achieve the effect 
of protection from light. Suspend the cells to enhance the 
staining effect; add 400ul binding buffer, and test the ap-
optosis rate within 1 hour. Use SPSSl7.0, SigmaPlotl2.0 
and other statistical software to analyze the experimental 
results. The experimental results are indicated by )( sx ± . 
One-way analysis of variance was used for data compari-
son among multiple groups, t-test was used for compari-
son between two sample means, and P<0.05 was consid-
ered statistically significant.
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uptake, intracellular trafficking and anti-tumor efficacy of 
doxorubicin-loaded reduction-sensitive micelles (26).

Analysis of nuclear magnetic resonance spectrum and 
DNA damage characteristics of glioma cell lines

Three kinds of glioma cell lines were irradiated with 
different doses of X-ray to obtain nuclear magnetic reso-
nance spectroscopy. The statistical results of DNA damage 
in three cell lines are shown in Table 1.

The nucleus was round, and the tail shape was behind 
the nucleus. The statistical analysis of DNA damage in 
three cell lines is shown in Figure 3.

Compared with the control group, as the irradiation 
dose increased, the DNA damage in the cell line gradu-
ally increased; compared with 1Gy, when the irradiation 
dose was 5Gy, the tail length and tail moment showed 
significantly different. Compared with 5Gy, the irradia-
tion dose was At 10Gy, and the tail length and tail mo-
ment are obviously different; compared with 10Gy when 
the dose is 15Gy, the difference between C6 and U87 is not 
statistically significant. Under the same irradiation dose, 

Results and Discussion
Analysis of the ratio between the concentrations of me-
tabolites in gliomas

The ratio of Cre / H2O and NAA / CRE was different 
between high-grade and low-grade gliomas. The metabo-
lite ratio analysis in glioma is shown in Figure 1.

Similar to Lac, when TE was extended from 35 ms to 
145 MS, the spectral lines of Ala also reversed. The me-
thyl dipolar signal of Ala cannot be detected in a healthy 
human brain. It is easy to detect in some brain tumors with 
elevated Ala. Due to the close coupling constants of β - 
CH3 of Ala and β - CH3 of Lac, it is difficult to distinguish 
the spectral lines of Ala and Lae by 1.5T NMR. 

Differential diagnosis of intracranial meningiomas 
based on magnetic resonance spectroscopy has been re-
ported (26).

Quantitative analysis
Flow cytometry was used to determine the cellular 

uptake efficiency of green BODIPY labeled polymer mi-
celles. The quantitative results were consistent with the 
qualitative results mentioned above. The uptake of DHA-
PLys(s-s)P polymer micelles was 6 times higher than that 
of unmodified PLys(s-s)P polymer micelles; the uptake of 
DHA-PLys(s-s)P was decreased by 3 times after adding 10 
MMOD glucose, and the uptake of DHA-PLys(s-s)P was 
inhibited by endocytosis inhibitors, of which the uptake 
of DHA-PLys(s-s)P was nearly 3 times lower than that of 
unmodified PLys(s-s)P polymer micelles. The quantitative 
results of flow cytometry analysis are shown in Figure 2.

PLys(s-s)P has a small amount of signal in the brain, 
which is similar to that of cells, suggesting that PLys(s-
s)P maintains the nature of polymer micelles internaliz-
ing into cells. Moreover, due to the small size of polymer 
micelles, PLys(s-s)P has a greater advantage in crossing 
BBB. In addition, the accumulation of DHA-PLys(s-s)P 
was significantly higher than that of PLys(s-s)P after DHA 
modification, which indicated that the ability of polymer 
micelles to cross BBB was significantly enhanced by the 
specific binding of DHA to GLUT l on BBB. The results 
of brain tissue sections showed that PLys(s-s)P polymer 
micelles were further absorbed by brain parenchymal cells 
after crossing BBB and were continuously concentrated 
in brain parenchymal region. In addition, DHA-PLys(s-s)
P can efficiently deliver drugs across BBB and into brain 
parenchymal cells to release drugs. Because of its stability 
in vivo circulation, it can help to improve drug delivery 
efficiency.

Furthermore, Cui et al. (2013) investigated the cellular 

Figure 1. Analysis of metabolite ratio in glioma.

Figure 2. The quantitative results analyzed by flow cytometric ana-
lysis.

Cell line DNA damage 0Gy 1Gy 5Gy 10Gy 15Gy

C6
Tail length 4.716±3.245 14.145±4.806 17.573±4.523 24.176±3.641 23.753±3.655

TDNA 10.643±9.834 22.004±11.627 26.971±12.022 34.447±9935 39.716±11.226
Onunori 0.753±1.094 3.554±2.775 5.174±3.365 8.536±3.144 9.695±3.887

U87
Tail length 0.335±0.546 5.093±3.104 8.965±4.382 17.623±6.465 16.957±6.049

TDNA 2.563±4.703 17.557±12.143 3.045±3.015 8.625±6.374 8.926±6.64
Onunori 20.043±6.205 28.843±5.987 33.843±6.983 37.603±7.673 39.922±6.667

U251
Tail length 28.984±6.534 38.077±8.032 45.917±6.917 53.077±9.603 57.702±8.965

TDNA 28.984±6.538 38.077±8.032 45.917±6.915 53.078±9.602 57.702±8.965
Onunori 10.736±2.698 17.873±7.357 22.576±6.196 32.985±7.972 42.563±6.903

Table 1. Statistical results of DNA damage in three cell lines.
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the DNA damage of the three cell lines showed significant 
differences: Compared with C6 and U87, the DNA dam-
age of U25l was heavier, and there were significant dif-
ferences in tail length, DNA content in the comet tail, and 
tail moment; In terms of tail length, C6 and U87 showed 
significant differences; when the irradiation dose was 0Gy, 
the DNA content in the tails of C6 and U87 was quite dif-
ferent.

Compared with the control group, with the increase of 
the radiation dose, the DNA damage of the cells gradu-
ally increased; compared with 1Gy, the tail length and tail 
moment at the 5Gy dose were significantly different; com-
pared to 5Gy, the tail length and tail at the 10Gy dose The 
moment difference is significant. In the long term, there 
is a significant difference between C6 and U87; when the 
irradiation dose is 0gy, the DNA damage of U25l is more 
serious, and the difference in the DNA content of the tail 
of C6 and U87 is significant.

Li et al. (2017) reported that metabolite changes de-
tected by 1H NMR spectroscopy could be used to deter-
mine DNA damage induced by X-ray exposure. 1H NMR 
spectroscopy is a noninvasive method for predicting DNA 
damage in glioma cells at the microscopic level (28).

Effect of radiotherapy on normal glial cells and analy-
sis of colony formation

With the increase in X-ray irradiation dose, the apop-
tosis rate of three glioma cell lines increased gradually. 
C6 and U87 showed a slow growth trend, while U251 
showed a growth trend of first fast and then slow. When 
the radiation dose was gradually increased, the apoptosis 
rate and DNA damage showed the same increasing trend. 
The colony-forming rates of the three glioma cell lines are 
shown in Table 2.

After the three cell lines were exposed to X-rays of dif-
ferent doses, the colony formation rate was obtained. With 
the increase of the irradiation dose, the colony formation 
rate gradually decreased; the colony formation rate was 
consistent with the trend of apoptosis rate and further pro-
moted cell apoptosis for X-rays. Death provided the basis. 
The dose survival relationship analysis of the three glioma 
cell lines is shown in Figure 4.

For U87 and u25l, the radiosensitivity of U87 is higher 

than that of u25l, while the DNA damage is less than u25l, 
indicating that DNA damage is affected by many other fac-
tors besides radiosensitivity. With the increase of radiation 
dose, lac / Cr and suc / Cr decreased gradually, while Cho 
/ Cr increased gradually, which can reflect the DNA dam-
age at the micro level and further monitor the apoptosis 
of tumor tissue. The DNA damage of U87 and U251 was 
more serious than that of C6 cells, and there was a posi-
tive correlation between DNA damage and Cho / Cr ratio. 
Therefore, nano-targeted micelles combined with in vitro 
radiotherapy have an inhibitory effect on glioma. Meas-
urement of the lactate to creatine ratio by 1 H NMR spec-
troscopy can be used to non-invasively assess apoptosis in 
glioma cells following X-ray irradiation (29,30).

In this paper, the change of metabolite ratio of glioma 
cell line after radiotherapy was measured by nuclear mag-
netic resonance hydrogen spectrum. The linear correlation 
between the change of metabolite ratio and DNA damage 
was preliminarily confirmed. It was also confirmed that 
nano-targeted micelles combined with in vitro radiothera-
py had an inhibitory effect on glioma, which provided mi-
croscopic evidence for the clinical application of HMRS 
as a noninvasive method in the clinical monitoring of the 
radiotherapy effect.

Our study confirmed the effectiveness of the in vivo 
proton MRS quantitative detection technique with a non-
suppressed water signal as the internal standard. NAA 
concentration, NAA / H20 ratio and NAA / Cho ratio can 
be used to distinguish low-grade and high-grade gliomas.

In this paper, there are still some shortcomings, such as 
the lack of stability in vivo, drug easy to release early, less 
tumor enrichment, poor tumor cell selectivity and endocy-
tosis efficiency, slow drug release in target cells and other 
factors that lead to unsatisfactory efficacy. The experiment 
in this paper is only based on the cell level in vitro, and 
the effect of in vitro radiotherapy on tumor tissue in vivo 
is more complex. This paper also needs to combine a large 
number of animal and clinical experiments so as to pro-
vide an important reference for the clinical application of 

Figure 3. Statistical analysis of DNA damage in three cell lines.

Cell line 0Gy 1Gy 5Gy 10Gy 15Gy
C6 0.863±0.062 0.613±0.042 0.173±0.022 0.0670±0.0030 0.0040±0.0020

U87 0.963±0.053 0.241±0.063 0.043±0.008 0.0003±0.0002 0.0000±0.0000
U251 0.162±0.021 0.093±0.016 0.041±0.002 0.0062±0.0011 0.0003±0.0003

Table 2. Colony formation rate of three glioma cell lines.

Figure 4. Analysis of dose survival relationship of three glioma cell 
lines.
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HMRS.
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