Evaluation of vincamine against acetylcholinesterase enzyme

Syed Sayeed Ahmad¹, Aisha Khatoon², Mohd. Sajid Khan², Mohammad Khalid³, Ahmed M. Alharbi⁴, Mohd. Haris Siddiqui*¹

¹Department of Bioengineering, Integral University, Lucknow 226026, India
²Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, India
³College of Pharmacy, Department of Pharmacognosy, Prince Sattam Bin Abdul Aziz university, Alkhurj 16278, Riyadh, Saudi Arabia
⁴Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia

ARTICLE INFO

ABSTRACT

The current article deals with the *in-silico* along with enzyme kinetics approach to search for a prominent AChE enzyme inhibitor among the known natural compounds. The computational tools were involved for this purpose and eventual vincamine, a monoterpenoid indole alkaloid, was selected based on several parameters, including free energy of binding (-10.77 kcal/mol) and ADME parameter. Computationally, it confirmed the interaction between vincamine and AChE at an indistinguishable locus from that of substrate AChI (-3.94 kcal/mol) but with much higher binding energy. Interestingly, amino acid residues Gly120, Gly121, Gly122, Glu202, Trp86, Tyr133, Ser203, Phe297, and His447 of AChE were found to be common in these interactions. Further, these findings were approved with wet lab tests where detailed kinetics was studied. It was found that vincamine inhibited AChE with the inhibition constant Kᵢ (239 µM). The value of IC₅₀ (239 µM) and Kᵢ (0.598 mM) was determined and further confirmed by Dixon, Lineweaver- Burk reciprocal, Hanes, and Eadie-Hofstee plots, respectively. The mode of interaction of the compound was found to be competitive for AChE. Thus, the present computational and enzyme kinetics studies conclude that vincamine can be a promising inhibitor of AChE for the effective management of AD.

Keywords:
Natural compound, AChE, Alzheimer’s disease, Vincamine, IC₅₀ value; inhibition kinetic

Doi: http://dx.doi.org/10.14715/cmb/2022.68.7.3

Introduction

Alzheimer’s disease (AD) is a progressive, irreversible neurodegenerative disorder that causes the death of brain cells and is recognized as a reason for dementia in elderly people (1). In the future, of around 8-10 years, AD is getting to be a standout amongst the most expensive maladies for society (2). AD is an intricate disorder where distinctive variables like β-amyloid conglomeration, deficiency of acetylcholine (ACh), and accumulation of tau proteins are considered as in charge of its etiology (3, 4). AD is characterized by severe loss of cholinergic neurons located in the basal forebrain and reduced ACh uptake in the cortical and hippocampus region of the brain. The cholinergic breakdown and its serious impact on AD gives a method of reasoning to the helpful utilization of acetylcholinesterase (AChE) inhibitors (5). AD can be treated by the employment of specific AChE inhibitors (6). The principle ability of AChE is to stop the working of ACh and ends the signaling at cholinergic neural connections. Besides, AChE increases the accumulation of β amyloid protein in the cerebral, which is responsible for the development of AD (7). In various studies, it has already been proved that AChE inhibitors played a vital role in the treatment of AD by preventing the degradation of ACh (8, 9). Cholinesterase inhibitors are not regularly utilized as a part of allopathic medicine and current medications don't prompt adequate generation of ACh in the treatment of AD. The phytochemicals and natural compounds, due to their antioxidant and anti-aging properties, are widely explored in the treatment of neurodegenerative disorders (10). Vincamine is a monoterpenoid indole alkaloid obtained from *Vinca minor* leaves having potent vasodilator action which increases the blood circulation to the cerebrum. It is also used for neuroprotective qualities, improvement, and anti-tumor impact of its subsidiaries. Vincamine is generally utilized as a part of human pharmaceuticals to increase the bloodstream in patients with acute or subchronic cerebral ischemia (11). Vincamine has already been studied as a potent AChE inhibitor by various groups of researchers. Ilkay Orhan et al; studied in vitro anticholinesterase activity of various plant alkaloids and concluded vincamine as a potent candidate to inhibit cholinesterase enzyme (12). Similarly, Omar M. E. Abdel-Salam et al; confirmed the effect of vincamine in the treatment of neurodegenerative disorder due to cholinesterase inhibitory action (13). All these reported studies were mainly focused on the evaluation of vincamine as an AChE inhibitor. Through an extensive literature search, it has also been observed that very little or no work has been done on computational studies, including molecular docking, molecular properties, drug-likeness, type of enzyme inhibition, and kinetic assay study of vincamine. A detailed and extensive in vitro study coupled with a computational study could be a

* Corresponding author. Email: mohdharis.siddiqui@gmail.com

Cellular and Molecular Biology, 2022, 68(7): 14-21
great advancement towards the improvement of increasing powerful AChE inhibitors for the treatment of AD. Thus, in this research work, we have evaluated the anti-Alzheimer potential of natural compound vincamine using an in-silico approach along with enzyme kinetics study.

Materials and Methods

Computational study

Target preparation for molecular interaction analysis

The human AChE (PDB ID: 3LII) enzyme (Figure 1.a) information was collected from the Protein Data bank (PDB) by a resolution of 3.2Å (http://www.rcsb.org/pdb/home/home.do). Ligands, water, and other heteroatoms were expelled from the protein atom alongside the other chain.

Ligand preparation for molecular docking study

Vincamine was used as the ligand in this study and its chemical structure (PubChem CID:15376) (Figure 1.b) was collected from the PubChem database (http://pubchem.ncbi.nlm.nih.gov) and further, it was saved in PDB format.

Molecular properties and drug-likeness

Drug-likeness is a key consideration when choosing compounds for the beginning periods of medication disclosure (14). The compounds with 5 and 0 hydrogen bond donors and acceptors, respectively, 500-dalton molecular mass and 5 log P value are considered as drug-likeness as per Lipinski’s rule of five, which is also known as the rule of five (ROF). SwissADME (http://www.swissadme.ch/index.php) was used to calculate the molecular properties of the compound.

Molecular docking and visualization

The docking process with an inhibitory compound (Vincamine) against AChE was done via AutoDock4.2. Protein and ligands were analyzed and adjusted for docking by utilizing AutoDock Tools which is incorporated in the MGL devices (http://mglttools.scripps.edu). The examination of the binding adaptation of ligand-protein complexes was performed utilizing a scoring capacity and free binding energy (15). The docking was performed on protein molecules with the incorporation of polar hydrogen atoms and characterization of rotatable bonds was performed. Further, the Auto Dock tool was used to incorporate hydrogen atoms, Kollman joined particles composed charges and salvation constraint. Auto grid program was used to create affinity grid maps of the dimensions of 40 x 40 x 40 Å matrix to target lattice co-ordinates through AChE active sites. For AChE, the x, y, and z co-ordinates on the catalytic site were 90.81, 83.98, and -8.04, respectively (16). Van der Waals and electrostatic terms were counted independently using separation subordinate dielectric capacities at automated dock mode using Lamarkian genetic algorithm with 10 unique runs and after 2,500,000 energy assessments. After AutoDock execution, the ligand-receptor complex was confirmed 10 times and the complex was visualized using the discovery studio visualizer and finally, binding energy was determined.

Wet lab study

Materials

Dimethyl sulfoxide (DMSO), 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB), Tris buffer, Acetylcholine iodide (ACHl), and Acetylcholinesterase enzyme (AChE) were obtained from Sigma–Aldrich Co., Magnesium Chloride (MgCl2) Sodium Chloride (NaCl), vincamine used as per obtained.

In vitro inhibition studies on AChE

The Ingkaninan method was employed to calculate the enzymatic activity (17). In this method, 3 ml reaction mixture was prepared by mixing DTNB (3 mM, 1000 µl), AChl (15 mM, 200 µl), Tris-HCl buffer (50 mM/pH 8, 700 µl), and 1 AChE (0.25 U/ml, 50 µl) in a test tube and different concentration of vincamine were used. The reaction mixture was placed in a cuvette and different concentrations of vincamine were added. The response was observed spectrometrically for 10 min at 405 nm. The reaction mixture (3ml) without vincamine was worked as blank. The % inhibition of AChE activity was determined with the help of the subsequent mentioned procedure:

\[
\text{Percentage inhibition} = \frac{(\Delta \text{OD of Control} - \Delta \text{OD of Drug})}{\Delta \text{OD of Control}} \times 100
\]

Kinetic Assay

The kinetic assay study of vincamine was carried out at five different concentrations (5, 5.5, 7.5, 8.5, and 10mM) of acetylcholine iodide (ACHl) in the presence and absence of vincamine at three concentrations (150, 200, and 250 µM) in three different reactions. The samples were analyzed spectrometrically at 405 nm for 10 min and OD at each minute was recorded and a Lineweaver-Burk graph was plotted to draw the line of inhibition. The equation is presented below:

\[
\frac{1}{v} = \frac{K_{m}}{V_{max}} \times \frac{1}{[s]} + \frac{1}{V_{max}}
\]

The secondary plots were plotted using the following formula.

\[
K'_{m} = \frac{K_{m}}{K_{i}} [I] + K_{m}
\]

Again, the Hanes plot was plotted using the following formula.

\[
\frac{[S]}{v} = \frac{[S]}{v_{max}} + \frac{K_{m}}{v_{max}}
\]

Estimation of Ki using Dixon plots

The Dixon plot was used to determine the type of enzyme inhibitions and dissociation constant Ki. Graphs were plotted between 1/V versus [I] at every [S]. The condition utilized for this association is specified below.
The value of K_I was acquired by simultaneously solving two sets of equations successively. The purpose of the crossing point of these sets of lines expresses in the estimation of K_i (Fig. 7).

Results and Discussion

In this work, *in vitro* enzyme inhibition and enzyme kinetic study have been assumed as an endeavor to examine the capacity of vincamine to go about as a strong AChE inhibitor and to illuminate the potential mechanism of accomplishment. In the meantime, the inhibitory actions of vincamine against AChE are still unknown. Thus, the binding mechanism of vincamine inhibitor was studied by different methodologies comprising of molecular docking approach, enzyme inhibition analysis, and enzyme kinetic studies. We strongly believe that this exploration would be helpful for analysts associated with medication planning in their continuous look for strong and adaptable AChE inhibitors. Furthermore, the ramifications of conceivable restraint by a compound might assist in the improvement of novel medications that show the anti-Alzheimer’s activity.

Molecular Interaction Study

This work depicts the molecular connections along with human AChE and vincamine, which were screened from 300 natural compounds based on binding efficiency with the selected target. Docking has turned out to be one of the essential strategies for lead compound improvement. Molecular docking is one of the best methods to determine the binding mechanism and affinity of the ligand with the protein molecule (18). The active compounds that do not fit properly in the binding site can also be recognized in molecular docking (19, 20). It is merit specifying that the "ligand" and "protein" were held adaptable by the docking programming throughout the study. AChE, with its catalytic anionic locations (ACS) interacted with vincamine through 18 amino acids, specifically Asp74, Asn87, Gln71, Gly120, Gly121, Gly122, Gly126, Glu202, Tyr72, Trp86, Tyr124, Tyr133, Tyr337, Ser125, Ser203, Phe297, and His447 (Figure 2). In our study, the free binding energy of -10.77 kcal/mol for vincamine-AChE CAS interaction was observed. Vincamine was seen to be engaged with four hydrogen bonding as UNK0:H45 - TYR124:OH, TYR124:OH - UNK0:O1, TYR124:OH - UNK0:O2, and TYR337:OH - UNK0:O1 at the active site of AChE. In a current report, the –OH of Tyr124 likewise demonstrated a hydrogen bond. The CAS containing the Ser-His-Glu set of the catalytic chord has a distinctive direction beside the dynamic site gorge, stretching out from the CAS, on the base close to Trp86 (21).

C11 and C12 carbon atoms of vincamine were involved in hydrophobic interactions through CE2 and CZ of residues Tyr124 and Tyr72 of the enzyme, respectively. C18 of vincamine was observed in pi-pi interactions with CE2 and CZ of the Tyr72 amino acid residue. Van der Waals, hydrogen bond and desolvation energy components of vincamine interface with AChE were found to be -11.22 kcal/mol, and electrostatic energy of -0.74 Kcal/mol was observed, while vincamine –AChE complex interface surface area of 890.952 Å² was observed. It is seen that a perfect AChE inhibitor should attach to the reactant destinations, which possibly will disturb the communications among the protein and peptide (Aβ) and slow down the malady movement (22). Hydrogen bonds, hydrophobic bonds, and pi-pi interactions assumed an imperative part of the vincamine-AChE interaction.

Substrate AChI was docked into a similar location to AChE. In this study, amino acid residues, Trp86, Gly120, Gly121, Tyr133, Glu202, Ser203, Phe295, Phe297, His447, Gly448, and Ile451 assumed a noteworthy function in the binding of AChI. Interestingly, amino acid residues, Trp86, Gly120, Gly121, Gly122, Tyr133, Glu202, Ser203, Phe297, and His447 of AChE were also observed to be associated with the interface with vincamine. The free binding energy of -3.94 kcal/mol for ‘AChI-AChE CAS-interaction’ was observed. Van der Waals, hydrogen bond and desolvation energy components of AChI interaction with AChE were found to be -4.23 kcal/mol and electrostatic energy segment of -0.03 kcal/mol was observed, while AChI-AChE complex total involved surface area of 652.511 Å² was found. The estimated free binding energy (ΔG) for substrate-AChE and vincamine-AChE interaction were -3.94 kcal/mol and -10.77 kcal/mol, respectively and can propose the proficiency of the complex (23).

This special action of vincamine showed competitive binding nature towards the catalytic sites of AChE. The selected natural compound vincamine has the highest drug-likeness score of 1.18. FDA-approved drug tacrine has a value of 0.97. The general medication likeness score for drug constitute is right-skewed and tops in the scope of 0.8 to 1.2 (24) represented by Figure 3.
It was accounted that the hydrogen bonding formed between compound and protein most of the time gives constancy to the ligand-protein complex and these formed hydrogen bonds are responsible for the stability of the complex (25, 26).

Enzyme kinetics study

The inhibition kinetics studies were endeavored to clarify how an inhibitor follows up on the catalyst and predicts its adequacy. The kinetic constants K_m and K_i are basic to understanding enzymatic activity in controlling the metabolism of an organism. We considered enzyme inhibition kinetics of vincamine on AChE along with the computational study.

The selected inhibitor showed noteworthy concentration-dependent restraint of AChE utilizing AChI as a substrate. The Michaelis-Menten constant K_m was dictated by the Lineweaver-Burk plan (27), in which substrate hydrolysis inverse ($1/V$) of inhibitor concentration was designed against substrate concentrations inverse by appropriating data in ORIGIN 6.1 (Figure 4). Further, the K_i of the interaction was determined by Lineweaver and Burk's plot using the equation to confirm with Dixon plot.

$$\frac{1}{K_m} = \frac{1}{K_m} \left(1 + \frac{[I]}{K_i}\right)$$

Hanes Plot depends on the reworking of the Michaelis–Menten representation. It is the proportion of the underlying $[S]$ to response velocity, V, which was plotted against $[S]$ for the determination of the K_m value (Figure 6).

The estimation of K_i was dictated by the Dixon (30) plot between the inverse of substrate hydrolysis ($1/v$) and $[I]$ and appropriates the data in software (Figure 7). The value for K_i was acquired from the convergence of the line depicted by that substrate concentration and the line having the slightest slope that is the greatest substrate concentration.

The obtained value of K_i from the Dixon plot was found to be $239\mu M$ and it was also confirmed by secondary plots (Figure 8.a,b).

The half-maximal inhibitory concentration (50% inhibitory concentration) has been utilized to study the restraint energy of an enzymatic response and to characterize the adequacy of an inhibitor (31). The AChE action was estimated at various concentrations of vincamine (150, 200, and 250 μM). The vincamine inhibited AChE with an IC_{50} value of $239\mu M$ by appropriate information with ORIGIN 6.1 in Figure 9.

Similarly, an alkaloid isolated from Nigerian Crinum
species, hamayne exhibited an IC_{50} value of 250 µM, three derivatives of tetrahydroquinolines also showed IC_{50} values of 215 µM, 805 µM, and 618 µM against AChE, and lycorine show 450 µM as IC_{50} value (32, 33). Since the value of K_{m} increases with an increase in competitive inhibition. Similarly, one of the acetonitrile compounds was also found to increase Km value (0.699 mM) for the same substrate (34), which is comparable to the Km value of vincamine against AChE. Herbal prescriptions have been a noteworthy source of novel compounds with different pharmaceutical exercises since the beginning (35, 36). Almost all the drugs have been derived, modified, or isolated from natural sources against several diseases, including AD. Vincamine, nowadays a leading drug, is utilized for cerebral metabolic and circulatory scatter disorders as it links hemodynamic and cerebrometabolic assets. Vincamine derivatives efficiently protect cells from the attack of reactive oxygen species (37-40). All the predicted values from different plots were summarized in Table 1.

Along with this study, several properties like absorption, distribution, metabolism, and excretion (ADME) were anticipated by SwissADME (41). Due to the unfavorable ADME parameter, several therapeutic compounds fail to reach clinical trials. Lipinski’s rule (42), Veber’s rule (43), Egan’s rule (44), Polar surface area (TPSA), and rotatable bonds were predicted and are elucidated in Table 2. The HIA and BBB level of vincamine was shown in Figure 10 collectively. The selected compound followed all the properties as mentioned in Table 2.

Further, the Achilles Blind Docking server (45) (http://bio-hpc.eu/software/blind-docking-server/) was employed to confirm the interactions between AChE and vincamine, which were found to interact with each other with a binding score of -7.10 kcal/mol. Here energetic contribution to the binding energy for the selected complex with different formed docked pose numbers as shown in Figure 11 A, while Figure 11B represents the selected pose number with the highest binding energy with each atom of vincamine. Figure 11 C represents the highest binding energy pose, while Figure 11D represents the distances between possible clusters in the selected complex.

Conclusions

In the present study, the free binding energy for vincamine and substrate was found to be -10.77kcal/mol and -3.94kcal/mol, correspondingly. Vincamine and substrate
were complexed with the AChE at a similar locus. Interestingly, amino acid residues, Trp86, Gly120, Gly121, Gly122, Tyr133, Glu202, Ser203, Phe297, and His447 of AChE were exposed in common interaction with vincamine and AChI. In the enzyme inhibition assay, vincamine showed inhibition with an IC\textsubscript{50} value of 250 µM. The Michaelis-Menten constant K\textsubscript{m} was preliminarily resolved by the Lineweaver-Burk plot, which was found to be 0.598 mM and the same was confirmed by Eadie-Hofstee and Hanes plots. The obtained value of K\textsubscript{i} from the Dixon plot was found to be 239 µM and, it was also confirmed by secondary plots. Line Weaver–Burk reciprocal plot demonstrated that vincamine as a competitive inhibitor of AChE and K\textsubscript{m} value was found to increase with concentration of inhibitor without affecting the V\textsubscript{max}. Vincamine was found to satisfy drug-likeness properties in the in-silico analysis. These findings clarify the valuable impacts of vincamine against AD and give a premise to the plan and improvement of the AChE inhibitor. A combination of in-vitro and computational study could be an imperative advance towards the improvement of increasingly powerful AChE inhibitors for the management of AD.

Acknowledgments
None

Conflict of interest
The authors confirm that this article content has no conflict of interest.

References
1. Ahmad SS, Akhtar S, Jamal QM, Rizvi SM, Kamal MA, Khan MK, Siddiqui MH. Multiple Targets for the Management of...
35. Nie F, Liang Y, Xun H, Sun J, He F, Ma X. Inhibitory effects of

