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Introduction
Streptococcus agalactiae belongs to the family of strep-

tococcaceae and is a common inhabitant of the healthy hu-
man gut and urogenital tract, particularly in women (1). As 
an opportunistic pathogen, S. agalactiae is a major cause 
of neonatal infections and mortality and has also emerged 
as a pathogen in elderly and immunocompromised adults 
(2). S. agalactiae is capable to adhere to various host cell 
types, namely epithelial cells of the vagina and the lung, 
endothelial cells and micro-vascular endothelial cells 
of the blood-brain barrier (3). However, the molecular 
mechanisms underlying the transition from colonization 
to infection have yet to be disclosed, and while the exact 
pathogenic features of S. agalactiae remain unrevealed, 
many virulence factors have been proposed to explain in-
fection-related pathogenesis (4). In S. agalactiae reference 
strain NEM316 (genotype: III/ ST23) (5), isolated from an 
infected infant, several extracytoplasmic virulence factors 
have been identified, such as capsule, proteases, adhesins, 

haemolysin, pili and pigment. These factors mediate ad-
hesion and epithelial cell invasion, and/or antagonize the 
immune system during phagocytosis (1, 6). 

The understanding of the transcriptomic setting opens 
insights into the pathways of bacterial physiology, me-
tabolism, and adaptation to changing environments (7, 8). 
Over the past decade, RNA sequencing (RNA-seq) has be-
come indispensable for the transcriptome-wide analysis of 
differential gene expression. Together with improved com-
putational tools for data analysis, innovations in RNA-seq 
technologies have been contributing to better-compre-
hending RNA biology and intermolecular interactions that 
govern RNA function, as well as transcriptional dynamics 
changes driving bacterial response and adaptation, to dis-
tinct growth conditions and external stimuli (9). Recently, 
RNA-seq technology has been successfully applied to 
clarify some molecular mechanisms of pathogenesis in S. 
agalactiae (8, 10-15). 

The first comparative transcriptomic study in S. aga-
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lactiae evidenced several genetic factors likely important 
for the adaptation to its bovine host (in particular related 
to lactose metabolism) (10). In 2018, Hooven et al. (12) 
identified the gene products required for S. agalactiae sur-
vival in human whole blood, and Cook et al. (13) identi-
fied novel genes involved in the vaginal colonization by 
S. agalactiae, using a murine model. The contribution of 
CRISPR-associated protein-9 to S. agalactiae colonization 
and disease was also investigated by RNA-seq (14). While 
these targeted studies provided insightful data about spe-
cific S. agalactiae adaptive traits, the expression levels of 
this bacterium during its normal growth in the laboratory 
have not yet been systematized. In this study, we investi-
gated the global gene expression, by RNA-seq, of S. aga-
lactiae reference strain NEM316 during the exponential 
growth phase. As S. agalactiae evasion from the human 
defense mechanisms has been linked to the production of 
DNases (16, 17), we performed an additional preliminary 
assay whereby S. agalactiae reference strain NEM316 was 
exposed to DNA in order to evaluate its effect on gene 
expression. 

Materials and Methods

Whole-genome sequencing of the laboratory reference 
strain NEM316

All experiments were conducted using the S. agalactiae 
reference strain NEM316 (ATCC 12403; genotype: III/ 
ST23). The reference strain NEM316, maintained in the 
laboratory at -80ºC in cryopreservation tubes (Cryoinstant 
Red, VWR, Belgium), was cultured in Columbia agar 
supplemented with 5% sheep blood (Biomérieux, Marcy 
l’Etoile, France) at 5% CO2 for 24 h. These cultures were 
used to inoculate fresh Todd Hewitt broth supplemented 
with 0,5% yeast extract (THB) that were allowed to incu-
bate without shaking at 37ºC with 5% CO2. Cell growth 
was monitored by measuring the optical density at 600 nm 
(OD600). At the middle exponential phase (OD600=0,2-
0,5), 1 ml of bacterial cells were collected, centrifuged 
(3000 rpm, 10 min), resuspended in 200µl of PBS and 
immediately stored at -20ºC for further DNA extraction. 
Genomic DNA was extracted as previously referred (18), 
with minor changes. Briefly, bacterial cells were subjected 
to high-speed centrifugation (14,000 rpm) for 10 min at 
4ºC. The pellet was digested for 2 h at 37ºC with 200 µl 
of Tris-EDTA buffer, pH 8.0, containing 10 U mutanolysin 
(Sigma-Aldrich, St. Louis, USA) and 15 mg/ml lysozyme 
(Sigma-Aldrich, St. Louis, USA) before treatment with 10 
mg/ml proteinase K (Roche, Penzberg, Germany). Subse-
quently, DNA was extracted using the NucliSENS® Easy-
Mag® (BioMérieux, Marcy l’Etoile, France) according to 
the manufacturer’s instructions. The concentration of the 
extracted DNA was measured with QubitTM (Thermo-
Fisher Scientific, Massachusetts, USA), and then subject-
ed to Next Generation Sequencing in NextSeq 550 equip-
ment (2x150bp) (Illumina, USA). The reads were deposit-
ed in the European Nucleotide Archive (ENA) (Bioproject 
PRJEB41294) under the accession number ERR4836035.

In order to evaluate the genetic differences between the 
genome of our laboratory passaged reference strain and 
the publicly available genome (GenBank accession num-
ber NC004368), two strategies were applied: i) de novo 
genome assembly using INNUca v.4.0.1 (https://github.
com/B-UMMI/INNUca) (19), followed by genome align-

ment and inspection using MAUVE (http://darlinglab.org/
mauve/mauve.html) (to inspect for the presence of struc-
tural changes, such as large indels); ii) reference-based 
mapping using Snippy v3.2 (to detect SNPs and small in-
dels) (https://github.com/tseemann/snippy). 

Clusters of Orthologous Groups (COGs) categories 
were assigned to the amino acid sequences retrieved from 
the NEM316 NCBI annotation (GenBank accession num-
ber NC004368) using the “cdd2cog” script (20) after RPS-
BLAST+ (Reverse Position-Specific BLAST) (e-value 
cut-off of 1e-2), where only the best hit (lowest e-value) 
and first COG were considered.

Bacterial culture for RNA-seq
Bacterial clones of NEM316 were grown in Colum-

bia agar supplemented with 5% sheep blood (Bioméri-
eux, Marcy l’Etoile, France), at 37ºC, 5% CO2 for 24 h 
and then inoculated in THB that were allowed to incubate 
without shaking at 37ºC, 5% CO2. Cell growth of S. aga-
lactiae strain NEM316 was monitored by optical density 
at 600nm (OD600). At OD600=0,6 (exponential growth 
phase, see Supplementary material Figure S1) 1 ml of bac-
terial cells were collected, briefly centrifuged (3000 rpm, 
10 min), resuspended in 1,8 ml of fresh THB and incu-
bated for 0, 10 and 20 minutes at 37ºC in the presence 
of 200µl of PBS (used as control). For direct DNA expo-
sure assays, the same procedure was performed, with the 
exception that 2µg/ml of DNA [human DNA from Hela 
cells – extracted using the DNA mini kit (Qiagen, Califor-
nia, USA) according to manufacturer’s instructions] was 
added instead of PBS, and nuclease reaction was stopped 
by adding EDTA (0.5 M, pH 8.0) at 4ºC.  For both condi-
tions, 1 ml of each bacterial culture was collected and im-
mediately subjected to high-speed centrifugation (14,000 
rpm) for 10 min at 4ºC for RNA extraction. Note that we 
intentionally did not treat the bacterial culture from which 
RNA would be extracted with RNAprotectTM Bacteria 
Reagent (Qiagen, CA, USA) because a preliminary assay 
showed that this product degrades S. agalactiae RNA (data 
not shown). 

RNA extraction 
RNA was extracted as previously referred (18), with 

minor changes, from bacterial cultures collected at 0, 10, 
20 minutes with and without DNA exposure. Briefly, the 
cells were lysed in 200 µl of Tris-EDTA buffer, pH 8.0, 
containing 10 U mutanolysin (Sigma-Aldrich, St. Louis, 
USA) and 15 mg/ml lysozyme (Sigma-Aldrich, St. Louis, 
USA), at 37ºC during 90 min. The RNeasy mini kit (Qia-
gen, CA, USA) was used according to the manufacturer’s 
instructions. Residual contaminant DNA was removed us-
ing 30 U RNase-free DNase (Qiagen CA, USA), and elu-
tion was performed with 40 µl of RNase-free water. RNA 
yield and purity were determined by absorbance measure-
ment at 260 and 280 nm using the Nanodrop 1000 spec-
trophotometer (Thermo Fisher Scientific, Massachusetts, 
USA). Extracted RNA from six bacterial cultures were 
finally stored at -80ºC until use.

Bacterial mRNA preparation/purification
Bacterial mRNA was enriched using the Ribo‐ZeroTM 

rRNA Removal Kit (Illumina, CA, USA) which removed 
abundant 16S and 23S rRNA from total RNA. The obtained 
bacterial mRNA was concentrated to a final volume of 14 
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years ago (5) and, since then, has been maintained in the 
laboratory. As such, in order to prepare RNA-seq assays, 
NEM316 was subjected to WGS to evaluate whether this 
laboratory passaged strain exhibited significant genetic 
changes in comparison with the publicly available genome 
(5) (GenBank accession number NC004368). Six genome-
dispersed mutations were detected, including three small 
indels and three single nucleotide polymorphisms (SNPs), 
corresponding to three non-synonymous mutations (Table 
1). Among these, we highlight an SNP in relA, which en-
codes an enzyme known to be involved in stringent re-
sponse and bacterial adaptation to environmental stress 
(12). In S. agalactiae, relA knockout strains demonstrated 
decreased expression of β-hemolysin/cytolysin, an im-
portant cytotoxin implicated in facilitating invasion (12). 
Although the impact of these particular mutations at the 
transcriptomic level is unknown, we cannot rule out the 
possibility that they reflect either events of laboratory ad-
aptation or errors in the first publicly released NEM316 
genome sequence. Notwithstanding, we consider it good 
practice to analyze the genome backbone of strains sub-
jected to gene expression (or other in vitro) assays, as a 
means to provide more complete data required to better 
interpret and discuss the results.

NEM316 transcriptomic analyses
The main goal of the present study was to evaluate the 

global gene expression dynamics of NEM316 S. agalac-
tiae reference strain during the exponential phase using 
RNA-seq technology. This growth phase is particularly 
interesting when studying the transcriptional activity be-
cause most cells in the population are actively dividing, 
and this ensures that the expression of most of the S. aga-
lactiae genes is assessed. As such, three-time points (0, 10 
and 20 minutes) were evaluated during the exponential 

µl using the RNeasy® MinElute® Cleanup Kit (Qiagen, 
CA, USA). The yield and integrity of the enriched mRNA 
samples were assessed with an Agilent Bioanalyzer, where 
the absence of rRNA readings is indicative of the success 
of rRNA depletion and purity of mRNA.

RNA-seq
Bacterial mRNA-enriched samples were subjected to 

library construction by a TruSeq Stranded mRNA sample 
preparation kit (Illumina, CA, USA). The obtained cDNA 
libraries were subjected to RNA‐seq on a high‐throughput 
MiSeq Illumina apparatus, targeting around 4M reads per 
1Mbp. Sequence reads (2x75bp) were subjected to qual-
ity control and subsequently mapped to the S. agalactiae 
NEM316 genome (as obtained above) using Bowtie2 (21). 
Relative gene expression was quantified and normalized 
as fragments per kb of CDS per million mapped reads 
(FPKM) using the Cufflinks software (version 2.1.1; http://
cufflinks.cbcb.umd.edu/). For comparative global gene 
expression analyses between normal growth conditions 
and the “direct DNA exposure”, we applied HTSeq-count 
(https://htseq.readthedocs.io/en/release_0.11.1/count.
html#) for read counting and state-of-the-art software 
for differential expression analysis (namely, EdgeR and 
Voom/Limma) using the interactive web-tool DEGUST 
(https://degust.erc.monash.edu/) (22). 

The reads were deposited in ENA (Bioproject 
PRJEB41294) under the accession numbers ERR4836029, 
ERR4836030, ERR4836031, ERR4836032, ERR4836033, 
ERR4836034.

Results and Discussion

NEM316 whole-genome sequencing 
S. agalactiae reference strain NEM316 was isolated 18 
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1313729 insertion
GBS_

RS06735.
pseudogene

gbs1273 811insAd --- d glucose-1-phosphate 
thymidylyltransferase

1363940 insertion CTT > CTTT
1741404 deletion GATATATA > GATATA

1839016 SNP GBS_
RS09285 gbs1779

A1077T

(Glu359Asp)
Missense 
variant

Major facilitator superfamily 
transporter

2001001 SNP GBS_
RS10040 gbs1928

G1952C

(Trp651Ser)

Missense 
variant

bifunctional (p)ppGpp synthetase/
guanosine-3',5'-bis(diphosphate) 
3'-pyrophosphohydrolase (relA)

2129967 SNP GBS_
RS10675 gbs2055

A11T

(Lys4Met)

Missense 
variant arginine repressor

Table 1. Genomic alterations for S. agalactiae NEM316 maintained in laboratory.

a Polymorphism location refers to the location in the reference genome: NEM316 (GenBank accession number NC004368). b Open Reading 
Frames (ORFs) designations according to reference genome: NEM316 (GenBank accession number NC004368). c The nucleotide changes in open 
reading frames are presented in the 5’ to 3’ direction. d This locus is a pseudogene in the reference genome (GenBank accession number NC004368) 
due to a one bp deletion as such NEM316 of our laboratory detains the original not truncated allele.



4

Inês Silvestre et al. / Gene expression of Streptococcus agalactiae , 2022, 68(7): 1-8

growth phase in THB.
Firstly, we ranked the S. agalactiae genes by expression 

level and correlated them with the gene functional cate-
gory (Figure 1) (Supplementary material Table S1). Huge 
differences in the median expression levels were observed 
between different gene functional categories (Figure 1), 
with the top expressed functional category (“Translation, 
ribosomal structure and biogenesis”) revealing a median 
expression value that was 55-fold higher than the less 
expressed functional category (“Cell motility”). The top 
three most expressed functional categories were “Trans-
lation, ribosomal structure and biogenesis”, “Energy pro-
duction and conversion” and “Posttranslational modifica-
tion, protein turnover, chaperones”. This result may not 
be surprising as during the exponential growth phase, the 
cell division rate is maximum and this implicates a high 
demand for proteins playing a role in translation and me-
tabolism. The three functional categories with the lowest 
median expression levels were “Cell motility”, “Intracel-
lular trafficking, secretion, and vesicular transport” and 
“Not assigned/Function unknown”.

The analysis of the top-100 genes with the highest level 
of expression at the exponential growth phase (Table S2) 
showed that the genes belonging to the functional catego-
ry “Translation, ribosomal structure and biogenesis” were 
highly represented (46%), with the proportion of genes 
from the remainder functional categories never exceed-
ing 15%. Also, 15 genes with unknown function were de-
tected among the highly expressed genes (GBS_RS11490, 
GBS_RS06375, GBS_RS06390, GBS_RS06380, 
GBS_RS06405, GBS_RS06400, GBS_RS06385, 
GBS_RS06800, GBS_RS11205, GBS_RS03445, 
GBS_RS10615, GBS_RS06395, GBS_RS00250, GBS_
RS05190, GBS_RS11525). Although these genes have 
not been grouped into any functional category by RPS-

BLAST against the COG database, fine-tune evaluation of 
their putative function based on the new NEM316 genome 
annotation (released on June 2020), plus literature sur-
veys, provided some clues that might justify the observed 
high expression level. This is the case of GBS_RS00250, 
which is believed to be required for S. agalactiae cell divi-
sion due to its potential role in peptidoglycan cleavage, 
since it includes a CHAP domain that has been associated 
with peptidoglycan hydrolysis (23). Disruption of this 
gene was shown to cause an altered cell morphology and 
an increased susceptibility toward different antibiotics, 
namely β-lactam antibiotics (24, 25). GBS_RS05190, a 
PASTA domain-containing protein, may also be involved 
in bacterial cell division as PASTA repeats are known to 
be key regulators of the membrane during bacterial cell 
division (26). GBS_RS11205 is a putative holin-like tox-
in, and holins, which are encoded by phages, have been 
considered responsible for disruption of the cytoplasmic 
membrane to assist endolysins during cell lysis (27). Al-
though most of these proteins are implicated in the bacte-
rial stress response, like GBS_RS06375, GBS_RS06380, 
GBS_RS06405, GBS_RS06400, GBS_RS06385, 
GBS_RS03445 and GBS_RS06395 (10, 28-30), others 
(GBS_RS11490, GBS_RS06390, GBS_RS06800, GBS_
RS10615, GBS_RS11525) do not have any assigned func-
tion, neither any predicted functional domain.

The functional category “Intracellular trafficking, se-
cretion, and vesicular transport”, which belongs to one of 
the functional categories with the lowest median expres-
sion levels, was also represented among the top-100 most 
expressed genes by GBS_RS09920 and GBS_RS00560 
(preprotein translocase subunit YajC and preprotein trans-
locase subunit SecY, respectively).

The functional category “Signal transduction mecha-
nisms” was represented among the top-100 most expressed 

Figure 1. Global gene expression by functional categories. Box plot showing the distribution of gene expression levels by functional category, 
for reference strain NEM16 at the exponential growth phase. Values reflect the mean expression level evaluated at three-time points (0, 10 and 20 
min) during exponential growth. Genes with mean expression levels < 1 FPKM were excluded from the analysis.
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genes by only one gene, GBS_RS08755, a response regu-
lator transcription factor, CovR, known to play a role in 
virulence gene expression (31,32).

Finally, we were interested in assessing the expres-
sion levels of a selected set of genes potentially linked 
to virulence (n=47) (Figure 2). The set includes the 
seven genes that putatively encode for secreted DN-
ases (GBS_RS03720, GBS_RS04825, GBS_RS01045, 
GBS_RS03490, GBS_RS02295, GBS_RS03960, GBS_
RS05380), and the genetic pilus islands (PI) that consist 
of five genes encoding for pilus assembly (33), PI-1 (that 
plays an important role in evasion from host innate immu-
nity) (GBS_RS03580, GBS_RS03575, GBS_RS03570, 
GBS_RS03585 and GBS_RS03565) and PI-2a (that is 
specifically involved in adhesion and biofilm formation) 
(GBS_RS07760, GBS_RS07745, GBS_RS07765, GBS_
RS07755 and GBS_RS07750) (34, 35). The major nucle-
ase, nuclease A (GBS_RS03720; old locus tag: gbs0661), 
identified in S. agalactiae NEM316 by Derré-Bobillot and 
co-authors (16), presented higher mean expression values 
(ranked at position 520º out of a total of 2169 genes eval-
uated) than the other DNase encoding genes (Figure 2). 
Among the PI genes, PI-2a presented higher mean expres-
sion values (ranked between positions 84º and 718º out of 
a total of 2169 genes evaluated) than PI-1 coding genes 
(ranked between positions 1058º and 1973º out of a total 
of 2169 genes evaluated) (Figure 2). 

Interestingly, three genes associated with virulence were 
ranked within the top-100 most expressed genes, including 
the PI-2a pilus major subunit PilB (GBS_RS07760) (Fig-
ure 2). The other two genes code for adhesins associated 
with the glycolytic pathway for energy metabolism; they 
were GBS_RS09445 (Glyceraldehyde-3-Phosphate Dehy-

drogenase, GAPDH), which is also thought to be involved 
in macromolecular interactions and bacterial pathogenesis, 
and GBS_RS03485 (enolase), belonging to “Carbohydrate 
transport and metabolism” functional category (36, 37).

 
NEM316 comparative transcriptomic analysis through 
exposure to DNA 

The scientific interest in S. agalactiae extracellular nu-
cleases increased with the discovery, by Brinkmann and 
colleagues in 2004 (38), that they can disrupt the DNA ma-
trix, which constitutes the nuclear backbone of neutrophil 
extracellular traps (NETs). Indeed, as NETs (also com-
posed of granule proteins and histones) (16, 39, 40) are re-
leased by neutrophils to degrade virulence factors and kill 
bacteria, this nuclease-mediated mechanism could play an 
important role in S. agalactiae virulence. Since then, al-
though important knowledge has been acquired about S. 
agalactiae nucleases (4, 16, 17, 41, 42) very little was add-
ed to the knowledge of the complex molecular pathways 
and stimuli triggering the release of DNases in vitro and in 
vivo. Here, we conducted RNA-seq assays to understand 
whether direct exposure to DNA would constitute a stimu-
lus that could affect gene expression during the exponen-
tial growth phase, by using reference strains NEM316, a 
recognized DNase producer. Although a preliminary as-
say at the transcriptomic level targeting gbs0661 revealed 
no significant expression differences among reference 
strains NEM316 (DNase producer) and 2603V/R (DNase 
non-producer) with and without DNA stimuli (data not 
shown), we hypothesized that exposure to human DNA 
could trigger differential gene expression in other S. aga-
lactiae genes (potentially involved in molecular cascades 
mediating DNase release and virulence). However, this 

Figure 2. Expression level (FPKM units) of genes potentially involved in virulence in reference strain NEM316 at exponential growth 
phase. Genes are grouped according to their predictive function in three groups, DNase, PI-1/PI-2a and other coding genes, and displayed by 
increasing level of expression. The values above the bars correspond to the rank position of each gene in the total of 2169 genes evaluated.



6

Inês Silvestre et al. / Gene expression of Streptococcus agalactiae , 2022, 68(7): 1-8

hypothesis was not verified, as no differentially expressed 
genes were detected for NEM316 during 20 minutes of the 
exponential phase (at 37ºC in THB), either with or with-
out the presence of human DNA (interactive online data 
navigation is available here: http://degust.erc.monash.
edu/degust/compare.html?code=b11b5fff2bf525ea465dc4
50989f351e#). While this data could suggest that human 
DNA, as a stimulus, has no impact on S. agalactiae ge-
netic transcription, other stimuli, as well as other strains, 
should be evaluated, as streptococcal DNases are under 
the control of the extensive regulatory systems (17). Thus, 
further work is required to fully understand the complex 
regulation of the expression of DNases, namely compara-
tive RNA-seq assays involving both high and low DNase 
producing strains in comparison with DNase non-produc-
ers, as well as the use of S. agalactiae strains of different 
human clinical origin (e.g. carriage and invasion). In addi-
tion, human neutrophils and NETs might better mimic the 
in vivo infection environment than the exposure to DNA, 
and thus, their impact on gene expression can also be of 
interest in future evaluations. Finally, we cannot exclude 
the need of evaluating the intrinsic catalytic mechanism/
activity of S. agalactiae DNases.

Despite the limitations, this pioneer assay allowed the 
public release of preliminary novel data (counts per mil-
lion, logFC and differential expression statistics, etc.) to 
the scientific community through an interactive and user-
friendly web tool (http://degust.erc.monash.edu/degust/
compare.html?code=b11b5fff2bf525ea465dc450989f35
1e#). This should be of help for the analysis and interpre-
tation of future RNA-seq studies in S. agalactiae, required 
to the disclosure of the complex molecular pathways (and 
putative stimuli) triggering the release of DNases.
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