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ABSTRACT 
 

 

On the translational front, integrative genomic approaches have spurred the identification of diverse 

mechanisms of drug resistance, tumor heterogeneity, metastasis and emerging preclinical targets. Recent 

breakthroughs in oncogenic cell signaling pathways have forged new links and multi-disciplinary 

researchers have unraveled different facets of signaling landscapes. Natural product research has 

witnessed breakneck developments mainly in the context of the ever-expanding list of bioactive 

components having significantly pharmacological properties. Genistein has gradually gained 

appreciation because of its multifaceted roles in the prevention and inhibition of carcinogenesis and 

metastasis. More importantly, the entry of genistein into various phases of clinical trials substantiates 

the medicinal and pharmacological significance of genistein in cancer chemoprevention.  In this review, 

we have attempted to summarize how genistein regulated different oncogenic pathways in 

carcinogenesis and metastasis. Furthermore, genistein-mediated regulation of non-coding RNAs is also 

an interesting feature that has been included in this review to realistically analyze how genistein-

mediated control of miRNAs, lncRNAs and circRNAs influence carcinogenesis. In the later sections, we 

have provided a summary of clinical trials related to genistein for cancer prevention/inhibition. 

However, apart from the optimistic approaches to further investigate genistein-mediated cancer-

inhibitory effects, certain hints have emerged which underscore the pro-metastatic role of genistein. 

Therefore, the pro-metastatic role of genistein in different cancers should be rationally tested in a 

broader context because these properties in the future may reduce the enthusiasm in the quest to pursue 

genistein as a potent cancer chemopreventive agent.  

 

DOI: http://dx.doi.org/10.14715/cmb/2021.67.6.42       Copyright: © 2021 by the C.M.B. Association. All rights reserved. 

Introduction 

Spatiotemporal regulation of signal transmission in 

cells has vital importance because deregulation of 

signaling cascades plays a central role in 

carcinogenesis. Scientific insights gleaned from recent 

years have set the stage for ‘next-generation’ clinical 

initiatives in prevention and precision oncology (1-5). 

Natural product research has ushered in a resurgence 

of interest in the critical evaluation of 

pharmacological properties of different natural 

products (6-13). Genistein started to gain the attention 

of researchers in the 1980s and a series of interesting 

research works provided evidence about the medicinal 

significance of genistein (14-16). In this review, we 

have provided a summary of the regulatory role of 

genistein in the inhibition of carcinogenesis and 

metastasis. We have systematically sub-divided this 

mini-review into various sections and mechanistically 

analyzed how genistein regulated PI3K/AKT/mTOR, 

TRAIL, SHH/GLI and NOTCH pathways in different 

cancers. Moreover, regulation of non-coding RNAs 

has also been discussed and seminal research works 

have been critically analyzed.  

 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Regulation of PI3K/AKT/mTOR pathway 

A complex equilibrium of biological signals exists 

within the human body for the control of normal 

cellular functions. Classically viewed as a "master 

regulator", mTOR (mechanistic Target of Rapamycin) 

regulates an intricate transduction cascade that 

controls a wide variety of cellular mechanisms. The 

PI3K-AKT-mTOR pathway is frequently deregulated 

in cancer and different types of compounds that target 

key proteins of this signaling network have been 

tested in preclinical and clinical studies (17-20). 

However, unfortunately, the clinical development of 

many of these agents has not moved to later-phase 

randomized trials. 

DEPTOR expression has been reported to be 

downregulated in genistein-resistant cells (21). 

Whereas, upregulation of DEPTOR improved 

sensitivity of PANC-1 and PaCa cancer cells to 

genistein. Everolimus, an mTOR-specific antagonist 

enhanced genistein sensitivity. ELK1 transcriptionally 

downregulated DEPTOR and enhanced resistance 

against genistein. Intraperitoneally injected genistein 

and intragastrically administered everolimus led to 

shrinkage of the tumor mass in NOD/SCID mice 

implanted with genistein-resistant PaCa and Panc-1 

cells (21).  

Genistein suppressed the levels of NFκB, p-AKT, 

p-mTOR, p-p70S6K1, p-4E-BP1 and enhanced the 

anti-tumor effects of cisplatin in HeLa cells (22).   

Gefitinib and genistein were found to be effective 

against mutant EGFR non-small cell lung cancer cells. 

Gefitinib and genistein efficiently suppressed the 

activation of EGFR, AKT and m-TOR in H1975 cells. 

Genistein and gefitinib induced regression of the 

tumors in mice xenografted with H1975 cancer cells 

(23).  

Collectively, PI3K/AKT/mTOR signaling axis is 

highly important in carcinogenesis and metastasis. 

Therefore, genistein-mediated targeting of this 

signaling axis is indeed exciting and warrants further 

research.   

 

Regulation of TRAIL-mediated Signaling 

TRAIL-mediated apoptotic death has gained 

extraordinary appreciation and limelight because of its 

characteristically unique features to kill cancer cells 

while leaving normal cells unharmed. These earlier 

findings were highly intriguing and compelled 

researchers to mechanistically analyze TRAIL-

mediated apoptotic pathways in a detailed manner 

(24-35). In this section, we have enlisted how 

genistein regulated pro-apoptotic and anti-apoptotic 

proteins to enhance TRAIL-mediated apoptotic death 

in resistant cancer cells.  

Genistein in combination with TRAIL 

synergistically and rapidly induced apoptotic death in 

TRAIL-resistant glioma cells (36). Genistein induced 

proteasomal degradation of short isoforms of c-FLIP. 

Significantly, overexpression of short isoforms of c-

FLIP severely abrogated genistein driven-TRAIL- 

induced apoptotic death (36). 

Genistein worked efficiently with TRAIL and 

upregulated the expression of Bax and simultaneously 

suppressed anti-apoptotic Bcl-XL in TRAIL-resistant 

AGS cancer cells (37). Combinatorial treatments with 

genistein and TRAIL significantly upregulated DR5. 

Genistein sensitized AGS cancer cells to TRAIL-

mediated apoptosis by activation of caspase-3 (37). 

Genistein and TRAIL combinatorially induced 

tumor shrinkage in the mice orthotopically implanted 

with AsPC-1 cells into the splenic lobe of the 

pancreas (38). However, there was evidence of a 

larger amount of extra-pancreatic tissues invaded by 

cancerous cells. But still, there is a need to further 

analyze the growth-inhibitory effects of genistein and 

TRAIL in tumor-bearing mice.  

Indole-3-carbinol, genistein has previously been 

reported to work efficiently with TRAIL against 

endometrial cancer. Levels of DR4, DR5 and cleaved 

caspase-8 were found to be enhanced whereas, levels 

of FLIP were suppressed in Ishikawa cells (39). 

It has been convincingly revealed in a series of 

research works that transportation of truncated BID 

(tBID) to the mitochondrion is instrumental to trigger 

intrinsic apoptosis. Accordingly, genistein and TRAIL 

have also been shown to enhance the entry of tBID 

into the mitochondria to trigger apoptosis (40).  

Seemingly, we have gathered initial basic works 

related to TRAIL-sensitizing activity of genistein but 

there is a need to address these questions more 

rationally in rodent models.  

In the next section, we will discuss how SHH/GLI 

signaling is pharmacologically targeted by genistein in 

different cancers.  
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Regulation of SHH/GLI Pathway 

Hedgehog ligands bind to patched, leading to 

internalization and degradation, thereby releasing 

smoothened, where it promotes dissociation of a 

SUFU (Suppressor-of-fused)–glioma-associated 

oncogene homolog (GLI) complex. Therefore, 

smoothened mediated disassembly of SUFU and GLI 

promoted the activation and nuclear translocation of 

GLI1 and GLI2 transcriptional factors (41,42).  

Genistein exerted inhibitory effects on renal CSCs 

by inactivation of the SHH pathway. Levels of SHH, 

SMO, GLI1 and GLI2 were noted to be suppressed by 

genistein in ACHN and 786-O sphere-forming cells 

(43). Likewise, genistein significantly suppressed the 

levels of SHH, SMO, and GLI1 in CNE2 and HONE1 

cells (44).  

GLI1-knockdown cells exhibited similar features to 

genistein-treated cells because genistein inhibited 

migratory abilities of CD44
+
 stem cell-like gastric 

cancer cells (45).  

Genistein led to significant inhibition of the tumor-

sphere-forming ability of tumorsphere cells of 22RV1 

and DU145 cells (46). SHH-treated cells generated 

larger tumorspheres and the capacity to form 

tumorspheres were found to be increased significantly 

by SHH. Contrastingly, GANT61 (GLI inhibitor) 

reduced tumorsphere size. Furthermore, the size of 

tumorsphere was found to be reduced by genistein. 

Intriguingly, genistein and docetaxel inhibited tumor 

growth in mice xenografted with either DU145-

tumorsphere cells or 22RV1 tumorsphere cells. 

Genistein significantly reduced GLI1 protein 

expression in tumor tissues derived from prostate 

cancer tumorsphere cells (46).  

Importantly, for detailed functions of the SHH 

pathway in carcinogenesis and metastasis, dissection 

of the intermeshed gene networks that are involved 

and identification of the commonalities between the 

networks in different cell types will enable researchers 

to gain valuable insights. 

 

Regulation of NOTCH Pathway 

Genistein reversed the epithelial-to-mesenchymal 

transition of colon cancer cells by downregulation of 

N-cadherin and simultaneous upregulation of E-

cadherin. Additionally, genistein suppressed of EMT-

associated proteins, such as SNAIL/SLUG, TWIST1, 

ZEB1 and ZEB2. Genistein reduced the levels of 

NOTCH-1 in HT-29 cells (47).  

NOTCH-1 inhibition blocked nuclear accumulation 

of NF-κB in MDA-MB-231 cancer cells. Genistein 

dose-dependently inhibited the activation of NF-κB in 

MDA-MB-231 cancer cells. Moreover, genistein also 

suppressed the levels of NOTCH-1 in MDA-MB-231 

cancer cells (48). 

In another interesting study, it was shown that 

genistein suppressed NOTCH-1 by increasing the 

expression of miRNA-34a in pancreatic cancer cells 

(49).  

Although medicinal chemists have identified small 

molecules having characteristically unique ability to 

pharmacologically manipulate a versatile biological 

pathway responsible for cell fate decisions in cancer 

cells, tumor microenvironment and metastasis, 

unfortunately, safe and effective ‘drugging’ of this 

pathway is not straightforward. Importantly, 

phenotypic screening of individual tumors, using 

patient-derived organotypic spheroids can yield 

relevant findings for the design and development of 

next-generation of NOTCH pathway-targeting 

molecules. More importantly, patient-derived 3D 

models that can be challenged with experimental 

agents might be viewed as another valuable addition 

to the screening toolbox as researchers sketch the 

landscape of the next generation of NOTCH pathway-

targeting molecules. 

 

Regulation of non-coding RNAs: 

The mysterious world of RNAs inside cells has 

been expanding consistently for decades. Each 

discovery adds a new and often surprising layer of 

intricacy to biological regulations and functions. 

More recently, various other types of ncRNAs such 

as lncRNAs (long non-coding RNAs) (50-53) and 

circular RNAs (54-55) have also gained the limelight 

and are reported to play dynamic roles in the 

regulation of gene networks and involved in 

carcinogenesis and metastasis.  

 

MicroRNAs 

MicroRNAs (miRNAs) are small, ribonucleic acid 

(RNA) molecules involved in the regulation of gene 

expression by binding to specific mRNAs (56-59). 
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Oncogenic miRNAs 

Genistein-mediated downregulation of miR-155 

played a central role in the induction of apoptosis in 

breast cancer cells (60). Genistein downregulated 

oncogenic miR-223 in gemcitabine-resistant 

pancreatic cancer cells (61). 

 

Tumor Suppressor miRNAs 

RTCB is a GTP-dependent 3′-phosphate/5′-OH 

RNA ligase (Hsieh). Genistein induced upregulation 

of miR-34a in tumor-initiating cells of head and neck 

cancer. miR-34a directly targeted RTCB and 

considerably suppressed self-renewal abilities, 

invasion properties and colony-forming features. 

Moreover, tumors derived from HNC-TICs were 

smaller in size treated with genistein. Tumor tissues 

developed from HNC-TICs demonstrated higher 

expression of miR-34a and lower expression of RTCB 

(62). Genistein stimulated p53-mediated upregulation 

of miRNA-1469. Moreover, miRNA-1469 directly 

targeted MCL1 and enhanced apoptotic death in 

laryngeal cancer cells (63). Genistein induced 

upregulation of miR-27a in A549 cancer cells. miR-

27a negatively regulated MET and suppressed the 

proliferation of A549 cancer cells (64). A combination 

of various tumor suppressor microRNA mimics in 

"cocktails", together with genistein might prove to be 

an exciting strategy for inhibition of cancer in 

xenografted mice.   

 

Long non-coding RNAs 

The activity of PRC2 is mediated by one of the two 

catalytic subunits, EZH1/EZH2 (enhancer of Zeste 

homologues, as well as two other core components, 

SUZ12 (Suppressor of Zeste 12) and EED (embryonic 

ectoderm development). Genistein effectively 

inhibited the interaction of HOTAIR with PRC2, thus 

resulting in tumor suppression. Genistein reduced 

EED levels in PRC2 which consequently impaired the 

interaction between HOTAIR and PRC2 (65). 

Whereas, overexpression of EED in the presence of 

genistein led to an increase in the interaction of 

HOTAIR with PRC2. HOTAIR and PRC2 worked 

synchronously and transcriptionally downregulated 

zona occludens 1 (ZO-1) (Figure 1). Contrarily, 

genistein blocked the interaction between HOTAIR 

and PRC2 and stimulated the expression of ZO-1. 

HOTAIR interacted with ARID1A and SMARCB1, 

subunits of the SWI/SNF chromatin remodeling 

complexes but genistein significantly abolished these 

interactions. Genistein interfered with the interaction 

between SMARCB1 and HOTAIR and inhibited the 

expression of SNAIL (Figure 1) (65).  

Calycosin and genistein considerably inhibited the 

activation of AKT and also reduced the expression of 

oncogenic HOTAIR in MCF-7 cancer cells (66).  

Tumor growth rates were noted to be markedly 

reduced in mice xenografted with HOTAIR-silenced 

DU145 cancer cells. Genistein induced 

downregulation of HOTAIR and simultaneously 

upregulated miR-34a (67). 

Ago2 is the major protein involved in the cleavage 

of target transcripts of miRNAs in mammalian cells 

(68). Ago2 knockdown drastically reduced HOTAIR 

silencing by miRNA-141. Incubation of in-vitro 

transcribed HOTAIR with Ago2 immunocomplex led 

to degradation of HOTAIR into smaller segments. 

Genistein led to suppression of HOTAIR and a 

concurrent increase in the expression of miR-141 (68).  

 

Circular RNAs 

Circ_0031250 has been shown to play an oncogenic 

role by enhancing the expression of FOXM1 in non-

small-cell lung cancer cells (69). miR-873-5p is a 

tumor suppressor and directly targets FOXM1 for the 

inhibition of carcinogenesis. Importantly, 

circ_0031250 acted as a sponge, sequestered away 

miRNA-873-5p and blocked miR-873-5p-mediated 

targeting of FOXM1. Genistein induced a significant 

regression rate of the tumor mass in mice xenografted 

with circ_0031250-silenced A549 cancer cells (69).  

 

 
Figure 1. HOTAIR is a long non-coding RNA and 

regulates the expression of different target genes. HOTAIR 

formed a complex with PRC2 through EED and 

transcriptionally inactivated ZO-1. HOTAIR worked 

synchronously with SMARCB1 and ARID1A and 

stimulated the expression of SNAIL.  
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Tumor growth inhibition by Genistein in 

Xenografted Mice 

Pioneering studies had shown that the co-culture of 

macrophages with ovarian cancer stem-like cells 

(OCSLCs) triggered the stemness of SKOV3 cancer 

cells via activation of the interleukin-8/STAT3 

pathway (70). Genistein-mediated inhibition of M2 

polarization suppressed the secretion of interleukin-8 

and inactivated STAT3 in THP-1 macrophages co-

cultured with ovarian cancer stem-like cells. 

Depletion of interleukin-8 and genistein treatment 

together reduced the levels of p-STAT3 and CD163 in 

THP-1 macrophages. Notably, depletion of 

interleukin-8 and genistein treatment combinatorially 

reduced the levels of CD133 and CD44 in SKOV3 

cancer cells. Furthermore, co-injections of SKOV3-

derived OCSLCs and THP-1 macrophages led to the 

formation of subcutaneous tumors in experimental 

models. Interactions between THP-1 macrophages and 

SKOV3-derived OCSLCs promoted the growth of 

tumors in experimental mice. Genistein and Ad-

STAT3 shRNA caused a reduction in the weights and 

size of tumor xenografts in experimental models co-

injected with SKOV3-derived OCSLCs and THP-1 

macrophages (70). Collectively, these findings 

highlighted that genistein inhibited tumor growth in 

mice co-inoculated with THP-1 macrophages and 

SKOV3-derived OCSLCs through blockade of the IL-

8/STAT3 pathway.   

Genistein blocked JAK/STAT3 and 

AKT/MDM2/p53 signaling cascades (71). Genistein 

inhibited phosphorylation of JAK1, JAK2 and 

STAT3. Moreover, inhibition of AKT and MDM2 by 

genistein inhibited the proliferation of cancer cells. 

Genistein with GLPG0634 (JAK1 pathway inhibitor) 

and/or MK-2206 (AKT pathway inhibitor) 

synergistically induced regression of the tumors in 

xenografted mice (71).  

ZDHHC17-MAP2K4-JNK/p38 signaling module 

contributed to Glioblastoma Multiforme development 

and metastasis by promoting tumorigenicity and self-

renewal of glioma stem cells (72). ANK domain of 

ZDHHC17 was found to be responsible for 

interactions with MAP2K4. Genistein specifically 

inhibited the MAP2K4 and ZDHHC17 interactions. 

ZDHHC17-expressing, as well as ZDHHC17-

deficient GSCs derived from U118MG cells, were 

implanted into the brains of immunocompromised 

NOD/SCID mice. ZDHHC17-expressing GSCs 

competently developed and formed intracranial 

tumors, whereas depletion of ZDHHC17 led to 

suppression of tumor growth. Knockdown of 

MAP2K4 and/or genistein injections inhibited tumor 

growth and prolonged the survival rates of mice 

implanted with ZDHHC17-expressing cells (72). 

DNA-PK (DNA-dependent protein kinase) has 

been shown to phosphorylate 473
rd

 serine of client 

proteins (73). DNA-PKcs is required for activation of 

AKT. X-ray irradiation led to activation of DNA-

PKcs. Phosphorylated-DNA-PKcs (Serine-2056) were 

remarkably higher in the irradiation alone group in 

U87 and M059K cells. Importantly, genistein blocked 

the activity of DNA-PKcs. Genistein suppressed 

phosphorylation of AKT at serine-473 in U87 and 

M059K cells. X-rays induced tumor cell invasion into 

adjacently located normal tissue areas in mice 

intracranially injected with U87 cells. Radiation 

independently induced an increase in the levels of 

DNA-PKcs, AKT2, and RAC1. Contrarily, this 

increase was suppressed considerably by genistein. 

Moreover, genistein reduced the levels of matrix 

metalloproteinase-2 and vimentin but simultaneously 

increased the levels of E-cadherin in irradiated tumor-

bearing mice (73). 

 

Metastasis-inhibitory role of Genistein 

6,8-diprenylgenistein inhibited lymphangiogenesis 

and lymph node metastasis in VEGF-A-mediated 

OCSLN animal models. The volume of the sentinel 

lymph nodes in the SCCVII/mVEGF-A injected group 

was increased but 6,8-diprenylgenistein reduced the 

volume increase of sentinel lymph nodes by VEGF-A 

(74).  

Co-administration of genistein with doxorubicin-

loaded polypeptide nanoparticles potently inhibited 

tumor growth in RM-1 tumor-bearing mice (75). 

Importantly, metastatic lesions were found to be 

reduced in mice co-administered with genistein and 

doxorubicin-loaded polypeptide nanoparticles. 

Metastatic areas of liver tissues demonstrated a 

significant reduction in genistein and doxorubicin-

treated group, which suggested that tumor cell 

metastasis was reduced because of an increase in the 

oxidative damage in the genistein and doxorubicin-

treated group (75). 
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Genistein remarkably inhibited metastasis nodes 

and micro-metastatic foci on the lungs of nude mice. 

Moreover, the number of intrahepatic metastases was 

found to be reduced in genistein (76). 

Genistein dose-dependently inhibited pulmonary 

and hepatic metastasis in mice orthotopically 

implanted with HCT116 cancer cells. Genistein 

reduced the levels of MMP2 and VEGFR3 in the 

tumor tissues of orthotopically implanted mice (77).   

Genistein markedly reduced pulmonary metastasis 

in mice orthotopically implanted with PC3-M prostate 

cancer cells (78).  

Genistein reduced the volume and number of 

osteolytic bone metastasis and the number of 

osteoclasts. Besides, genistein significantly enhanced 

trabecular area, trabecular thickness as well as 

trabecular number (79).  

 

The darker side of Genistein: Pro-metastatic role 

Surprisingly, apart from the metastasis-inhibitory 

role of genistein, the pro-metastatic role of genistein 

has also been documented in different scientific 

studies. The pro-metastatic role of another soy 

isoflavone equol has also been reported (80). 

Bone is a common site for metastasis during breast 

cancer progression (81). Micro-metastasis in bone 

marrow is detected in breast cancer patients and is 

associated with a poor prognosis. However, 

surprisingly, it was shown that dietary soy isoflavones 

triggered an increase in pulmonary metastasis in an 

experimental model of breast cancer with bone micro-

metastasis (81). These findings are highly important 

and need to be tested in detail. Another study provided 

evidence about the pro-metastatic role of genistein. 

Genistein stimulates tumor growth development and 

metastasis in a prostate cancer model (82).   

 

Clinical Trials 

The study was designed to analyze the 

combinatorial effects of genistein and gemcitabine 

hydrochloride in the treatment of stage IV breast 

cancer patients (NCT00244933). However, the 

decision was made to close the study after 17 patients 

because of lack of efficacy. 

Another study was terminated in which clinicians 

analyzed the effects of genistein in the treatment of 

patients with localized prostate cancer planning to 

undergo radical prostatectomy (NCT00058266).  

In another study, maximum tolerated doses, 

efficacy and safety of the Decitabine-genistein drug 

combinations were sought to be determined in 

advanced solid tumors and non-small cell lung cancer 

(NCT01628471).  

An intervention consisting of mixed soy 

isoflavones did not reduce breast epithelial 

proliferation in healthy, high-risk adult western 

females. Clinical researchers did not find evidence 

about the efficiency of mixed soy isoflavones for the 

prevention of breast cancer (83).  

Genistein was clinically evaluated for the treatment 

of patients with stage II, stage III, or stage IV prostate 

cancer patients (NCT00005827). Moreover, genistein-

mediated effects were also analyzed for the treatment 

of pancreatic cancer patients (NCT00882765). 

However, the results have not been shared or posted 

for a clear conclusion.  

 

Concluding remarks 

Recent breakthroughs in our knowledge about the 

molecular basis of cellular processes, identification of 

pharmacologically relevant therapeutic targets and 

refinements within the regulatory landscapes have 

generated exciting, unprecedented and invaluable 

opportunities in the field of oncology drug 

development. However, higher costs, longer 

development timelines and steeper rates of attrition 

continue to create roadblocks in the tortuous pathway 

of drug development. Interestingly, the cancer 

chemopreventive roles of genistein have attracted the 

attention of interdisciplinary researchers. Yet, apart 

from the optimistic approaches to further investigate 

genistein-mediated cancer-inhibitory effects, certain 

clues have emerged that highlight the pro-metastatic 

role of genistein. Therefore, the pro-metastatic role of 

genistein in different cancers should be rationally 

tested in a broader context by critical analysis of 

tumor-microenvironment and how genistein promotes 

the invasion, colonization and outgrowth of cancer 

cells in the distant organs.  
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