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ABSTRACT 
 

 

The research aims to identify the inhibitory potential of natural dietary phytochemicals against non-

insulinotropic target protein alpha-glucosidase and its possible implications to diabetes mellitus type 2.  

A data set of sixteen plant-derived dietary molecules viz., 4,5-dimethyl-3-hydroxy-2(5H)-furanone, 

apigenin, bromelain, caffeic acid, cholecalciferol, dihydrokaempferol 7-o-glucopyranoside, 

galactomannan, genkwanin, isoimperatorin, luteolin, luteolin 7-o-glucoside, neohesperidin, oleanoic 

acid, pelargonidin-3-rutinoside, quercetin, and quinic acid were taken to accomplish molecular docking 

succeeded by their comparison with known inhibitors including acarbose, miglitol, voglibose, 

emiglitate, and 1-deoxynojirimycin. Among all phyto-compounds, bromelain (ΔG: -9.54 kcal/mol), 

cholecalciferol (-8.47 kcal/mol), luteolin (-9.02 kcal/mol), and neohesperidin (-8.53 kcal/mol) 

demonstrated better binding interactions with alpha-glucosidase in comparison to the best-known 

inhibitor, acarbose (ΔG: -7.93 kcal/mol). Molecular dynamics simulation of 10 ns duration, CYP450 site 

of metabolism identification, and prediction of activity spectra for substances depicted the bromelain as 

the most stable inhibitor compared to luteolin and acarbose. Findings of molecular interactions, 

molecular dynamics study, metabolism, and biological activity prediction proved bromelain as a 

potential alpha-glucosidase inhibitor. Thus, bromelain might be helpful as an insulin-independent 

therapeutic molecule towards controlling and managing diabetes mellitus type 2. 

 

DOI: http://dx.doi.org/10.14715/cmb/2021.67.5.3                           © The Author(s) 2021. Cellular and Molecular Biology 

Introduction 

Diabetes mellitus type 2 (DM2) is considered the 

deadliest form of diabetes wherein the pancreas does 

not secrete ample quantities of insulin due to 

impaired β-cells, and the body is reluctant to use it 

aptly, resulting in an increased glucose concentration 

in the blood. About >90% of older people are prone 

to be diagnosed with DM2 worldwide. However, the 

progression of DM2 has been seen slow in children 

and younger people (1). A child born by diabetic 

parents has a 50% chance of developing DM2. The 

propensity of developing the disease for identical 

twins is greater than 75%, irrespective of whether 

they have grown up in the same family or not. 

Environmental factors may render a genetically 

susceptible person more vulnerable to the disease, 

viz. rich calorie indexed dietary compounds, and 

sedentary habits might prompt the disease onset 

before.  

 Obesity, high-calorie diet, visceral fat 

accumulation, sedentary lifestyles, genetic 

susceptibility, physical inactivity, hypertension, 

dyslipidemia, gestational diabetic history, and 

ethnicity viz., Hispanics, African Americans, Native 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Americans, Asian Americans, and Pacific Islanders 

are major risk factors for DM2. Diabetes mellitus type 

1 (DM1) or juvenile-onset diabetes mellitus is another 

non-communicable disease that accounts for about 5-

10% of cases globally and is more common in 

children and the younger populace. It is insulin-

dependent (IDDM), wherein the pancreatic cells of 

hereditarily vulnerable patients do not secrete insulin 

due to the autoimmune-facilitated selective beta-cell 

damage resulting in absolute insulin scarcity, 

hyperglycemia, metabolic complications, oxidative 

stress, and inflammations. Human leukocyte antigen 

DR3 (HLA-DR3) and DR4 (HLA-DR4) isotypes 

susceptible populations are prone to developing DM1 

four to six folds more than normal individuals. 

Primary adrenal insufficiency, celiac disease, gastritis 

type A, and Hashimoto thyroiditis are also strongly 

associated with DM1 (2-4). On average, 10% of 

diabetic patients have another variant of diabetes 

referred to as latent autoimmune diabetes in adults 

(LADA) with a salient feature of the delayed arrival 

of DM1. Sometimes LADA is poorly diagnosed and 

misunderstood as a DM2.  Data reveals that pregnant 

women are also susceptible to gestational diabetes 

mellitus (GDM) that may be diminished after the 

child's birth. However, such children may be affected 

by DM2 at the later stage of their lives (5). Moreover, 

a fraction of the population exhibits a moderate form 

of diabetes, better known as impaired fasting glycemia 

(IFG) and impaired glucose tolerance (IGT). People 

having IFG and IGT are more likely to be developed 

DM2 later (6).  

The centenary commemoration of insulin did not 

make scientific communities so happy and relaxed 

because diabetes still ranks 7th among various 

threatening diseases showing exponential growth 

globally. More than 700 million cases can be seen in 

the coming 2-3 decades until the sincere 

implementation of the Sustainable Development 

Goals (SDGs), preventing strategies to control and 

manage diabetes in every nook and corner of the 

world. Among all types, DM2 is most prevalent in the 

population irrespective of developing or developed 

socioeconomic status and is the culprit for millions of 

deaths each year worldwide. Retinopathy, 

gastroparesis, nephropathy, erectile dysfunction, 

bladder dysfunction, peripheral neuropathy are the 

microvascular complications associated with DM2.  

Moreover, cerebrovascular disease, coronary heart 

disease, Monckeberg arteriosclerosis, peripheral artery 

disease, including gangrene and ulceration, are 

grouped as the macrovascular disease often seen in 

DM2 patients. Chronic diabetic patients can also 

suffer from diabetic foot, limited joint mobility, 

hyporeninemic hypoaldosteronism, sialadenosis, 

diabetic cardiomyopathy, necrobiosis lipoidica, 

diabetic fatty liver disease, and hyperosmolar 

hyperglycemic state (7-11). American Diabetes 

Association (ADA), World Health Organization 

(WHO), International Diabetes Federation (IDF), and 

regional committees make efforts to implement the 

SDGs recommendations to cure and prevent non-

communicable diseases that assure drop down almost 

30% of premature mortalities worldwide (12,13). The 

comparative data of diabetes occurrence in 2019 and 

estimated prevalence in 2030 and 2045 as per IDF 

Atlas 9th edition is shown in Table 1. 

 

Table 1. DM2 cases in 2019 and projections in 2030 and 

2045 (12). Year (A), North America & Caribbean (B), South & 

Central America (C), Africa (D), Europe (E), South-East Asia (F), Middle 

East & North Africa (G), Western Pacific (H) 

A B C D E F G H 

 Diabetes (Millions) 

2019 48 32 19 59 88 55 163 

2030 56 40 20 66 115 76 197 

2045 63 49 47 68 153 108 212 

 

Reports reveal that DM2 cases in the Middle East 

& North Africa are increasing steeply compared to 

other continents at a surprising rate in the past few 

years. For the most part, one-fourth of the population 

is impacted by type 2 diabetes, which is also expected 

to increment in the coming days significantly (14-16). 

According to IDF statistics 2019, the trend in DM2 

(20–79 years) for the top five countries in the Middle 

East and North Africa is illustrated in Figure 1. 

Many chronic disease risks are associated with 

DM2, so if left untreated over a long time, leading to 

damage of various vital organs, as mentioned before. 

As per the recommendation of IDF and ADA, 

minimizing postprandial glucose (PPG) concentration 

is the most crucial step to managing diabetes (17-20). 

Therefore, inhibiting molecular targets elevating PPG 

levels is a therapeutically promising strategy (19). 
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Figure 1. Diabetic trends among people aged between 20–

79 years for the top five countries in the Middle East and 

North Africa (12). 

 

Alpha-glucosidase (AGS) is an essential enzyme in 

the digestive tract’s mucosal brush borders that 

increases PPG concentration by catalytic hydrolysis of 

the terminal (1→4)-linked glycosidic bonds in dietary 

polysaccharides, oligosaccharides, and glycans into α-

glucose and fructose. AGS plays a significant role in 

carbohydrate metabolism, lysosomal catabolism of 

glycans, and post-translational enzymatic changes of 

cellular glycoproteins in conjunction with alpha-

amylase located intestinal lumen transforming dietary 

starches to oligosaccharides (21). AGS inhibition 

retards the breakup of carbohydrates in the small 

intestine and lessens the PPG elevation. Thus, this 

phenomenon significantly affects polysaccharide 

digestion, glycoprotein dispensation, and cellular 

engagements honing the path of identifying new 

bioactive compounds against diabetes and other 

metabolic and cellular diseases (22).  

Acarbose (glucobay, precose) (DB00284), miglitol 

(glyset) (DB00491), voglibose (volix) (DB04878), 1-

deoxynojirimycin (duvoglustat) (DB03206), and 

emiglitate (BAY o 1248) commercial AGS inhibitors 

have been recommended to postprandial 

hyperglycemia along with healthy diets and active 

lifestyles. These inhibitors retard the metabolism of 

complex carbohydrates and glycans by inhibiting 

AGS and thus check gastrointestinal absorption, 

which lowers blood glucose after having meals (23-

27). Even though scrupulous reports support 

therapeutic aids in curbing the post-meal glucose 

concentration, PPG decrease in broad coverage of 

population exhibiting significant disease risks 

decrement is still underway. Moreover, regular 

consumption of AGS inhibitors leads to cause side 

effects, viz., flatulence, diarrhoea, vomiting, 

abdominal pain, distension, and allergic issues (28). 

So, despite commercially available promising AGS 

drugs, we need to identify natural bioactive molecules 

having great inhibition potential and meagre side 

effects. Towards this direction, the proposed research 

goals to find promising inhibitors against DM2 via 

molecular interaction of AGS with sixteen small 

phytomolecules including 4,5-dimethyl-3-hydroxy-

2(5H)-furanone, apigenin, bromelain, caffeic acid, 

cholecalciferol, dihydrokaempferol 7-o-

glucopyranoside, galactomannan, genkwanin, 

isoimperatorin, luteolin, luteolin 7-o-glucoside, 

neohesperidin, oleanoic acid, pelargonidin-3-

rutinoside, quercetin, and quinic acid using  

AutoDock Tools (ADT) (29). Post molecular 

interaction analyses, MD simulation, metabolism 

prediction, molecular reactivity, and biological 

activity spectrum investigation of phytomolecules and 

their comparison with AGS drug molecules reveal 

bromelain's strong inhibition potential and stability. 

 

Materials and methods 

3D structure retrieval and optimization of alpha-

glucosidase 

 3D crystal structure (2.15 Å) of AGS was retrieved 

from RCSB PDB 

(https://www.rcsb.org/structure/3WY1) (30). The only 

apoprotein was taken to prepare input files suitable for 

molecular docking by removing undesired molecules, 

atoms, and ions, e.g., (3R,5R,7R) octane-1,3,5,7-

tetracarboxylic acid, glycerol, and magnesium. The 

CHARMm force field was assigned to optimize and 

minimize target structure to remove the steric clashes 

and intrusions (31-34). 

 

3D structure retrieval and optimization of 

phytomolecules:  

2D structure (.sdf) structure of all ligands, namely 

4,5-dimethyl-3-hydroxy-2(5H)-furanone 

(CID:62835), apigenin (5280443), bromelain 

(381623138), caffeic acid (689043), cholecalciferol 

(5280795), dihydrokaempferol 7-o-glucopyranoside 

(101683279), galactomannan (439336), genkwanin 

(5281617), isoimperatorin (68081), luteolin 

(5280445), luteolin 7-o-glucoside (5280637), 

neohesperidin (442439), oleanoic acid (485707), 

pelargonidin-3-rutinoside (44256626), quercetin 

https://www.rcsb.org/structure/3WY1
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(5280343), and quinic acid (6508) were downloaded 

from PubChem database 

(http://pubchem.ncbi.nlm.nih.gov). Similarly, 2D 

structures (.sdf) of acarbose (9811704), miglitol 

(441314), voglibose (444020), emiglitate (72004), and 

1-deoxynojirimycin (29435) were also extracted. 2D 

(.sdf) to 3D (.pdb) structural conversion was done 

using the BIOVIA discovery studio visualizer (DSV). 

All ligands were energetically optimized and 

minimized using the same parameters as AGS. 

 

Docking simulation 

Molecular docking of natural ligands and reference 

drug molecules with AGS was achieved using ADT to 

find their most plausible binding interactions. PDBQT 

files of AGS, ligands and drug molecules, grid 

parameter file (.gpf), and a docking parameter file 

(.dpf) were prepared to perform docking experiments. 

The grid box around the protein molecule was drawn 

with variable grid points in x, y, z axes and maximum 

spacing (1.00 Å) between two consecutive grids. Ten 

runs for each ligand were executed. Minimum free 

energy of binding (ΔG) and inhibition constant (Ki) 

was chosen as selective parameters towards getting 

one of the best-docked conformations of ligands into 

the binding pocket of AGS (35-39). 

 

Molecular dynamics simulation 

MD simulation of 10 ns duration was performed on 

docked complexes of AGS with bromelain, luteolin, 

and acarbose at 300K at the MM level using 

GROMACS 5.1.2 (40). The ligands were extracted 

from the docked complexes utilizing the gmx grep 

module. The CGENFF server obtained the topology 

and forcefield parameter files of the ligand. The 

topologies were generated for AGS utilizing pdb2gmx 

modules of gromacs, and bromelain, luteolin, and 

acarbose using the CGENFF server were merged (41). 

All docked complexes were soaked in a dodecahedron 

box of water molecules with a margin of 10Å. The 

gmx editconf module was used for creating boundary 

conditions. The charges on the docked complexes 

were neutralized by adding Na
+
 and Cl

-
 ions using the 

gmx genion module to maintain neutrality, preserving 

the physiological concentration of 0.15 M. The system 

was then minimized for 500000 steps using the 

steepest descent algorithm. Finally, the system 

temperature was raised from 0-300K during their 

equilibration of 100 ps at constant NVT and NPT. 

After the equilibration phase, the particle mesh was 

applied following the Ewald method (42,43). Finally, 

the protein-ligand system was introduced to 10 ns of 

MD simulation under identical conditions at 1 bar and 

temperature of 300K. The gmx rms, gmx rmsf, and 

gmx sasa modules of GROMACS were used to obtain 

RMSD, RMSF, and SASA of ligand-protein bound 

molecules (40,41).  

 

Metabolism prediction 

 SMARTCyp 3.0 tool was used to predict 

bromelain, luteolin, and acarbose’s metabolism sites 

that are most liable to CYP450-mediated their 

biotransformation (44-48). 

 

Biological activity identification 

 The biological activity of bromelain, luteolin, and 

acarbose against various molecular targets was 

predicted using the online computation tool PASS 

(prediction of activity spectra for substances). PASS 

uses Pa and Pi symbols for a subclass of active and 

inactive compounds having values in the range of 

0.000-1.000, respectively (49,50). 

 

Results and discussion  

Molecular interactions 

 All ligands and reference drug molecules were 

docked to AGS, getting one of their respective 

conformers' most energetically favourable binding 

interactions. Natural ligands exhibit plausible binding 

having ΔG values between -5.83 to -9.54 kcal/mol and 

inhibition constant (Ki) in the range of 3.53 to 336.29 

μM.  Drug molecules depict molecular interactions 

with ΔG values in the range of -6.19 to –7.93 

kcal/mol, and Ki between 324.64 to 88.25 μM.  

Among drug molecules, acarbose (ΔG: -7.93 

kcal/mol, Ki: 88.25 μM) was found one of the best 

molecules interacting efficiently with AGS.  Four 

ligands, namely bromelain, cholecalciferol, luteolin, 

and neohesperidin, showed better binding interactions 

than acarbose, the most efficient drug molecule. 

Bromelain and luteolin molecules were portrayed as 

the top two better binders having free energy of 

binding -9.54 and -9.02 kcal/mol and inhibition 

constant 3.53 and 4.88 μM, respectively. Furthermore, 

bromelain, luteolin, and acarbose were carried 

forward for MD simulation.  

http://pubchem.ncbi.nlm.nih.gov/
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Moreover, eighteen residues viz., Q164, Y165, 

I166, L173, S174, P175, M177, L178 (H), S179, T180 

(H), P196, E531, S535 (H), T648, V649, D650, (2H), 

H651, and W702 of bromelain (Figure 2), thirteen 

residues namely- D191 (H), L192, A193, Y201, 

W285, D313 (H), W390, W425, R509, W522, D525 

(H), F558 (π) and H583 of luteolin (Figure 3), fifteen 

residues viz., P175, 176, L178, S179, T180, S181 

(2H), T648, V649, D650 (2H), H651, Q652 (H), T673 

(H), G674, Y675, and W702 of acarbose (Figure 4) 

were showing binding interactions with AGS. 'H' and 

‘π’ written in parenthesis, respectively display H-

bonding and pi interaction rendering stability to the 

bound ligand and protein complexes (51,52). Detailed 

docking simulation analysis of natural ligands and 

reference drug molecules is shown in Tables 1 and 2 

(Supplementary file). 

 

 

Figure 2. Docked complex of bromelain and AGS  a) 3D 

surface view, b) 2D interactions. Dotted lines represent H-

bonding. 

 
 

Figure 3. Docked complex of luteolin and AGS a) 3D 

surface view, b) 2D interactions. Dotted lines represent H-

bonding. F558 shows π interaction with luteolin. 

 

 

MD simulation 

 Molecular dynamics simulation of 10 ns duration 

for bound complexes of bromelain, luteolin, and 

acarbose with AGS was executed using the 

GROMACS package. MD plots for root-mean-square 

deviation (RMSD), root-mean-square fluctuation 

(RMSF), solvent-accessible surface area (SASA), and 

free energy of solvation during SASA were created to 

evaluate the molecular interaction stability of ligands 

and protein complexes. The molecular interaction of 

ligands into the binding pocket of AGS acquires 

conformational changes to attain stability (53-55).  

 

 
 

Figure 4. Docked complex of acarbose and AGS  a) 3D 

surface view, b) 2D interactions. Dotted lines represent H-

bonding. 

 

Root-mean-square deviation 

The protein’s stability and likeness to its native 

structure were measured by RMSD. The average 

value of RMSD for acarbose (black), bromelain (red), 

and luteolin (green) complexed with AGS was found 

0.17 nm, 0.15 nm, and 0.16 nm, respectively. 

Minimum and maximum deviation of drug and ligand 

molecules were depicted as 0.09-0.25 nm, 0.09-0.20 

nm, and 0.09-0.23 nm, respectively (Figure 5a). The 

RMSD plot reveals that the bound complex of 

bromelain with target protein is more stable than 

acarbose and luteolin. 

 

Root-mean-square fluctuation 

 The RMSF illustrates the mean fluctuation of 

residues during entire periods of MD simulation. The 

pictorial graph ensures the stability of AGS bound 

with bromelain, luteolin and acarbose. Residues 

fluctuations at a different position in the RMSF plot 

are due to the molecular interaction of ligand and drug 
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molecules. The plot reveals that residues fluctuation 

upon binding with luteolin and acarbose is exhibited 

more than bromelain (Figure 5b), dictating the impact 

of both phytoligands and reference molecule with 

AGS is not portrayed in similar patterns during 

simulation. However, luteolin and acarbose depict 

almost similar trends of residues fluctuation. 

 

Solvent-accessible surface area and free energy of 

solvation 

 The illustration of SASA exposes protein's 

interactable surface to the solvent molecules. The 

average value of SASA for acarbose, bromelain, and 

luteolin interacted with AGS was depicted as 33.37 

nm2, 34.05 nm2, and 32.45 nm2 (Figure 5c).  The 

SASA findings exhibit that internal residue of AGS 

upon binding of bromelain and acarbose are less 

accessible by the solvent as compared to luteolin. The 

average free energy of solvation (ΔGsolv) of AGS-

acarbose, -bromelain, and -luteolin was predicted as -

43.38 kJ/mol/nm2, -44.93 kJ/mol/nm2, and -43.48 

kJ/mol/nm2, respectively (Figure 5d). RMSD, RMSF, 

SASA, and free energy of solvation plots 

comparatively favour the potency of bromelain as the 

most plausible inhibitor of AGS. 

 

 
Figure 5. MD simulation of docked complexes of 

bromelain, luteolin, and acarbose with AGS a) RMSD plot 

as a function of time. b) RMSF plot (c) SASA plot, and d) 

Free energy of solvation. Red, green and black represent 

bromelain, luteolin, and acarbose, respectively. 

 

 

CYP450 metabolism prediction 

Identifying the sites of a chemical compound most 

likely to be metabolized is imperative to facilitate the 

combinatorial design of small chemical molecules, 

thereby curtailing their attrition rate in different 

phases of clinical trials. Therefore, CYP450 

metabolism of bromelain and luteolin was compared 

with drug molecule acarbose based on different 

scores, energy, COO-dist, Span2end, and 2D-SASA. 

The most probable CYP3A4, 2D6, and 2C9 sites of 

metabolism and their attribute depictions are shown in 

Figures 6a-c, 7a-c, and 8a-c, respectively. Table 3-5 

shows the attributed-values for CYP3A4, 2C9, and 

2D6 respectively (56,57). 

 

Table 3. CYP3A4 site of metabolism prediction. 

Compounds (A), 3A4 ranking (B), Atom (C), 

3A4 score (D), Energy (E) 2D SASA (F), Span2end 

(G), Relative span (H), Similarity (I) 
Reference values: Energy (<999), span2end (<=4), relative span 

(0.5-1), similarity (0-1) (56). 

 

 
 

Table 4. CYP2C9 site of metabolism prediction. 

Compound (A), 2C9 ranking (B), Atom (C), 2C9 score (D), 

Energy (E), 2D SASA (F), Span2end (G), Relative span 

(H), Similarity (I) 

Reference values: Energy (<999), span2end (<=4), relative span 

(0.5-1), similarity (0-1) (56). 
 

 

 

A B C D E F G H I 

Acarbose 1 C.28 34.4 41.1 7.4 4 0.8 0.3 

2 C.20 35.2 41.1 6.8 6 0.7 0.3 

3 C.42 40.4 48.5 11.6 1 1.0 0.3 

Bromelain 1 C.54 41.2 48.5 10.3 4 0.9 0.3 

 2 C.47 41.2 48.5 9.9 4 0.9 0.3 

 3 C.59 41.8 48.5 9.6 6 0.8 0.3 

Luteolin 1 C.14 66.7 74.1 24.3 2 0.8 0.3 

2 C.18 67.5 74.1 26.1 3 0.7 0.7 

3 C.17 68.1 77.2 26.7 0 1.0 0.3 

A B C D E F G H I 

Acarbose 1 C.42 53.9 48.5 11.6 1 0 0.3 

2 C.28 64.4 41.1 7.4 4 0 0.3 

3 C.20 64.5 41.1 6.8 6 0 0.3 

Bromelain 1 C.61 67.7 62.2 10.8 1 0 0.3 

 2 C.53 67.7 62.2 9.7 1 0 0.3 

 3 C.41 71.3 48.5 22.8 11 0 0.7 

Luteolin 1 C.20 99.7 77.2 28.6 2 6 0.7 

2 C.17 99.7 77.2 26.7 0 4 0.3 

3 C.18 108.5 74.1 26.1 3 5 0.7 
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Table 5. CYP2D6 site of metabolism prediction; 

Compounds (A), 2D6 ranking  (B), Atom (C), 2D6 

score (D), Energy (E), 2D SASA (F), Span2end (G), 

Relative span (H), Similarity (I) 
Reference values: Energy (<999), span2end (<=4), relative span 

(0.5-1), similarity (0-1) (56). 

 

 
 

Figure 6. CYP3A4 site metabolism prediction a) 

bromelain, b) luteolin, and c) acarbose. The most probable 

sites of metabolism are designated in red, orange, and 

yellow solid spheres. 

 

 

 
Figure 7. CYP2C9 site metabolism prediction a) 

bromelain, b) luteolin, and c) acarbose. The most probable 

sites of metabolism are designated in red, orange, and 

yellow solid spheres. 

 

 
Figure 8. CYP2D6 site metabolism prediction 

a) bromelain, b) luteolin, and c) acarbose. The most 

probable sites of metabolism are designated in red, orange, 

and yellow solid spheres. 
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Table 2. Molecular interaction of alpha-glucosidase with phyto-ligands and known inhibitors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S. 

No. 

 

Ligands CID 
ΔG* 

(kcal/mol) 

#Ki 

(μM) 

Residues making H-bonds^ 

 

1.  4,5-dimethyl-3-hydroxy-2(5H)-furanone  62835 -6.33 226.73 S529-HG…O, H…E531-OE1 

2.  Apigenin 5280443 -7.25 7.53 H…D191-OD1, H…D313-OD1 

3.  Bromelain 381623138 -9.54 3.53 T180-H…O, D650-H…O, H…S535-OG, H…L178-O, 

H…D650-OD1 
4.  Caffeic acid 689043 -6.71 263.65 H583-HE2…O, H…D525-OD1, H…D313-OD2 

5.  Cholecalciferol 5280795 -8.47 5.43 H…P110-O, E168-O1…H 

6.  Dihydrokaempferol 7-O-glucopyranoside 101683279 -7.79 78.87 D650-H…O, H…D650-OD1, H…S535-OG, H…D650-OD2, 

H…E531-OE1 

7.  Galactomannan 439336 -6.71 288.58 A193-H…O, H…D191-O, H…D19-OD2, H…D525-OD2 

8.  Genkwanin 5281617 -7.85 236.46 H583-HE2…O, H…D313-OD2 

9.  Isoimperatorin 68081 -7.07 87.93 H…D191-O, H…D19-OD2 

10.  Luteolin 5280445 -9.02 4.88 H…D191:OD1, H…D525:OD1, H…D313:OD2 

11.  Luteolin 7-O-glucoside 5280637 -7.27 123.47 H…E112-OE2, H…V267-O, H…Y518-OH  

12.  Neohesperidin 442439 -8.53 87.98 D650-H…O, H65-H…O, H…T673-O 

13.  Oleanoic acid 485707 -6.83 297.35 H…D525-OD2, D650-H…O 

14.  Pelargonidin-3-rutinoside 44256626 -7.81 76.49 R190-HH22…O, W390-HE1…O, H…D191-OD1 

15.  Quercetin 5280343 -7.71 94.31 H583-HE2…O, H…D525-OD1, H…D313-OD2 

16.  Quinic acid 6508 -5.83 336.29 W390-HE1…O, R509-HH21…O, H…D191-OD1, H…D525-

OD2, H…D191-OD2, H…D427-OD2 

17.  Acarbose 9811704 -7.93 88.25 S181-OG…H83, S181-HG…O16, D650-OD2…H66, D650-

OD2…H67, Q652-OE1…H82, D650-OD2…H66, T673-
O…H77 

18.  Miglitol 441314 -6.19 324.64 H…D191-OD2, H…D525-OD2, H…D427-OD2 

19.  Voglibose 444020 -6.45 286.45 H…D191-OD1, H…D191-OD2, H…D525-OD2, H…D427-
OD2 

20.  Emiglitate 72004 -7.36 133.68 T195-HG1…O, H…D191-OD2, H…D525-OD2, H…D191-

OD1, H…D191-O 

21.  1-deoxynojirimycin 29435 -7.01 154.43 R509-HH21…O, H583-HE2…O H…D525-OD1, H…D525-

OD2, H…D313-OD1, H…D313-OD2 

*Predicted free energy of binding by ADT; #Predicted inhibition constant by ADT; ^H-bonds are shown by dotted lines 

http://pubchem.ncbi.nlm.nih.gov/compound/5280343

