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Abstract: This study aimed to compare the diagnostic efficacy of MRI and PET/CT in lung cancer of mouse with spinal metastasis. 40 healthy Balb/c nude 
mice were selected. 0.1 ml of human lung cancer cell A549 bacterial suspension was injected by the left ventricle injection method to establish a lung cancer spi-
nal metastasis model, and the abnormal signs of the nude mice were closely observed. When the body weight was reduced by 20%, micro PET/CT imaging and 
small coil MRI imaging were applied after intraperitoneal injection of thiopental anesthesia in nude mice. After the imaging was completed, the nude mouse was 
dissected and the spinal tumor was removed. The nature of spinal metastases was diagnosed by the pathology department. 5 nude mice died of abdominal infection, 
2 nude mice had no spinal tumors, and the remaining 33 nude mice were successfully modeled. 33 nude mice were confirmed by pathology to have 64 metastatic 
vertebral lesions, among them, there were 7 cervical vertebrae, 24 thoracic vertebrae, 16 lumbar vertebrae, 6 sacral vertebrae and 11 caudal vertebrae. The sensi-
tivity of MRI in the diagnosis of spinal metastases was 78.13%, and specificity was 56.25%. The sensitivity of PET/CT for the diagnosis of spinal metastases was 
92.19%, and specificity was 78.95%. The specificity and positive predictive value of PET/CT for the diagnosis of spinal metastases were not significantly different 
from those of MRI (P> 0.05). The sensitivity, accuracy and negative predictive values were significantly higher than those of MRI (P< 0.05). PET/CT is superior 
to MRI in the diagnosis of spinal metastases, and its sensitivity, accuracy and negative predictive values were significantly higher than those of MRI (P< 0.05). It 
is worthy to be further promoted in clinical practice.
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Introduction

Lung cancer is the most common cancer globally 
(1). Its morbidity and mortality are high, and the inci-
dence of lung cancer is still growing (2, 3). Lung cancer 
is often manifested as metastatic disease, with a special 
tendency to metastasize to bones (4, 5). Bone metastasis 
is a common metastasis site in patients with lung cancer. 
Lung cancer bone metastasis not only has a serious im-
pact on the quality of life of patients but also has a poor 
prognosis (6). These metastases are associated with 
significant morbidity, loss of functional independence, 
and decreased quality of life (7). A large number of pa-
tients with cancer died each year due to bone metastases 
(8), and spinal metastasis is the most common site of 
lung cancer bone metastasis, accounting for about 50% 
of patients with lung cancer bone metastasis (9). 

The PET/CT integrated imaging system is a dual-
mode imaging system that combines both positron 
emission tomography (PET) and CT in a single device 
(10, 11). PET/CT diagnosis enables oncologists to view 
images within the anatomical framework provided by 
CT, which has better visualization and appreciation for 
the molecular information provided by PET. However, 
18F-FDG can be used as a "contrast agent" for radio-
logists. This is because 18F-FDG can highlight anato-

mically under-recognized but suggestive lesions (12). 
Magnetic resonance imaging (MRI), due to its good 
soft-tissue resolution, is the preferred imaging method 
for assessing intramedullary cavity metastasis, tumor 
expansion from the medullary cavity, and surrounding 
structural involvement (13). What’s more, MRI is very 
sensitive to the detection of bone metastases. This is 
due to the ability to display a focal aggregation map of 
radiotracers on bone scans before cortical destruction 
occurs (14, 15).

Currently, the diagnosis of lung cancer spinal metas-
tases is depending on CT, MRI and other imaging stu-
dies, only a few PET/CT were used. This study aimed 
to establish a nude mouse model of lung cancer spinal 
metastasis, using PET/CT, MRI for diagnosis, also pa-
thological results were compared to determine its dia-
gnostic value.

Materials and Methods

Lung cancer cell lines
10% of inactivated fetal bovine serum was used in 

the DMEM medium (Shanghai Xinyu Biotechnology 
Co. Ltd., Item No.: 19-0040-100). Human lung cancer 
cell A549 was cultured (Shanghai Enzyme Research 
Biotechnology Co. Ltd. article number: ATCC-76). The 
cells were digested and passaged with 0.25% of trypsin 



139

Comparison of MRI and PET/CT in lung cancer with spinal metastasis.

Cell Mol Biol (Noisy le Grand) 2020 | Volume 66 | Issue 3

Wenkai Hu et al.

(Shanghai Beinuo Biotechnology Co. Ltd., Item No.: 
T4049-500ML). Centrifuge at 1500 rpm for 5 min at 
standard room temperature. Discarding the supernatant 
and washing it with PBS (Shanghai Lianmai Bioengi-
neering Co. Ltd., item number: LM0221A), after cen-
trifugation at 800 rpm for 8 min, the cells were diluted 
with PBS to prepare for a suspension with a concentra-
tion of 1×107/mL.

Research objects and modeling
40 healthy Balb/c nude mice were selected, all of 

them were males, aged between 8-10 weeks, weighted 
between 18-21g, were purchased from Changzhou 
Cavans Experimental Animal Co. Ltd, and the animal 
certificate number is SCXK (Su) 2011-0003. They were 
kept in a room with no special pathogens at a room tem-
perature of 23 – 25 °C and humidity of 55-62%, and 
were free to drink water. All mice were modeled after 1 
week of adaptive feeding. 

Nude mice were injected intraperitoneally with pen-
tobarbital sodium 60 mg/kg for anesthesia (Shanghai 
Xinya Pharmaceutical Co. Ltd., SFDA approval num-
ber: H31021724). Disinfect the skin with 75% alcohol 
(Shanghai Youyu Biotechnology Co., Ltd., item num-
ber: YYJK-916), the limbs were fixed on the bench. A 
small incision of 2-3 cm was drawn from the left side 
of the second intercostal line of the nude mouse. The 
needle was tilted from the inside down and was injec-
ted obliquely upward. It was at an angle of 45°C to the 
horizontal and vertical axes of the nude mouse. Gently 
remove the needle when it was inserted approximately 
5-6 mm. If there was bright red blood in the syringe, it 
indicated the left ventricle was successfully punctured. 
At this point, keep the empty needle stable, and then 
slowly inject 0.1mL of the cell suspension into the left 
ventricle. After the cell suspension was fully injected, 
re-extract to confirm whether there was red blood in 
the syringe. After a successful injection, the cotton ball 
was used to gently press the pinhole. Finally, wait for 
the nude mouse to regain consciousness and monitor 
their vital signs. The left ventricle was injected with the 
cell suspension for 2 weeks, and the nude mice were 
weighed daily and the abnormal signs were closely ob-
served. Being unable to eat or drink, uncontrolled blee-
ding, severe respiratory infection, and abnormal central 
nervous response were considered humane endpoints 
(16), and animals exhibiting signs of such endpoints re-
ceived a large dose of the anesthetic drug in the abdomi-
nal cavity. Death was confirmed when no physiological 
response was observed and no vital signs were detected.

Animal imaging test
After the inoculation of lung cancer cell, A549 from 

the left ventricle (17), severe systemic failure, shortness 
of breath and a 20% weight loss in nude mice indicate 
that the mice have had cachexia. Nude mice were in-
jected intraperitoneally with 50mg/kg of 1% thiopental 
sodium for nude mice (18) (Shanghai Xiyuan Biotech-
nology Co. Ltd., article number: XY-EP-T1200000). 
After anesthesia, apply inveon micro PET/CT imaging 
(Siemens Preclinical Solution, Knoxville, TN, USA), 
and 1.5 Tesla MRI unit small coil MRI imaging (Philips 
Healthcare, The Netherlands).

Micro PET/CT scanners imaging: The mice fasted 

for more than 6 h before PET/CT test; after anesthesia, 
the modeled nude mice were injected with 18F-FDG 
(purchased from Hefei Bomei Biotechnology Co. Ltd.). 
The dose was 0.2mci/unit, and micro CT and micro PET 
were performed half an hour later. In the meanwhile, the 
number of lesions in the spine was recorded.

Collection of MRI with sense body 
MRI imaging in mice does not require the injection 

of contrast agents. Then apply for a T-weighted image 
axial position, sagittal scanning (TR 500 MHz, TE 20 
MHz) and T-weighted fat-filled axial position, coro-
nal scanning (TR 4360 M Hz, TE 114M Hz), respec-
tively. The back spine of the nude mice was scanned, 
and the suspected bone lesions were scanned by STIR 
sequence, and some cases were scanned by enhanced 
scanning, with a layer thickness of 4 mm and an interval 
of 1 mm. In the meanwhile, the number of lesions in the 
spine was recorded.

Pathological test
After the imaging was completed, the nude mice 

were sacrificed by cervical dislocation and dissec-
ted, and the spinal tumors were removed and labeled 
separately. The lesion tissue was routinely dehydrated, 
immersed, embedded, and serially sliced with 10% of 
formaldehyde. The sections were 4μm in thickness and 
were observed after HE staining. The nature of spinal 
metastases was diagnosed by pathology.

Imaging Analysis
Image analysis was performed by two experienced 

imaging physicians combined with the pathological test 
to confirm the diagnosis of spinal metastases. The dia-
gnostic efficacy of both imaging methods was compared 
with the pathological test, and the sensitivity, specifi-
city, accuracy, positive predictive value and negative 
predictive value were used as evaluation indicators.

Statistical analysis
The analysis was performed using SPSS 20.0 statis-

tical software (Shanghai Kabe Information Technology 
Co. Ltd.). The count data were used by the α2 test. Com-
parisons at different times within the group were ana-
lyzed by repeated measures of ANOVA, and the Bonfer-
roni test was the post hoc test. P< 0.05 was considered 
statistically significant.

Results

Nude mouse weight data
The bodyweight of nude mice gradually decreased 

during week 2 to week 6 of modeling, and the difference 
was statistically significant (P< 0.001). The weight of 
nude mice was not significantly different between week 
3 and week 2 of modeling with week 5 and week 6 of 
modeling (P> 0.05). Models of the weight of nude mice 
at week 4, 5 and 6 were significantly less than those at 
week 2; models of the weight of nude mice at week 5 and 
6 were significantly less than those at week 3; models 
of the weight of nude mice at week 6 were significantly 
less than week 5, and the difference was statistically 
significant (P< 0.05). The maximum percentage of body 
weight loss due to cachexia was 24.61% (Table 1 and 
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predictive value was 50/57, which was 87.72%; the 
negative predictive value was 9/23, which was 39.13%. 
33 lung adenocarcinoma nude mice were found to 
have 83 lesions by PET/CT, among them, 64 cases 
were confirmed to be metastatic vertebral lesions by 
pathology and 19 cases were benign lesions. Sensitivity 
59/64, which was 92.19%; specificity 15/19, which was 
78.95%; accuracy (59+15) /83, which was 89.16%; 
the positive predictive value, was 59/63, which was 
93.65%; the negative predictive value was 15/20, which 
was 75.00% (Table 2).

The specificity and positive predictive value 
of PET/CT for the diagnosis of spinal metastases 
were not significantly different from MRI (P> 0.05). 
Sensitivity, accuracy, and negative predictive value 
were significantly higher than MRI, and the difference 
was statistically significant (P< 0.05).

Discussion

Left ventricular injection, used in this study to esta-
blish a nude mouse model of spinal metastases, is wi-
dely used in the clinical practice. Arguello et al. (20) 
first reported the successful experience of using left 
ventricular injection to make bone metastasis models in 
nude mice, which has the characteristics of strong re-
producibility and high success rate. It is currently belie-
ved that metastasis of malignant tumors is transferred 
to the spine through the bloodstream. The transarterial 

Figure 1).
The bodyweight of nude mice gradually decreased 

during week 2 to week 6 of modeling, and the difference 
was statistically significant (P< 0.001). The weight of 
nude mice was not significantly different between week 
3 and week 2 of modeling with week 5 and week 6 of 
modeling (P> 0.05). Models of the weight of nude mice 
at week 4, 5 and 6 were significantly less than those 
at week 2; models of the weight of nude mice at week 
5 and 6 were significantly less than those at week 3; 
models of the weight of nude mice at week 6 were 
significantly less than week 4, and the difference was 
statistically significant (P< 0.05).

Modeling Results
The results have shown that 5 nude mice died 

within 4 weeks after modeling, and the mortality rate 
was 12.5% (19). After anatomy, it was assumed that 
the cause of death was an abdominal infection, 2 nude 
mice had no spinal tumors; after the remaining 33 nude 
mice were molded for 5 weeks, the nude mice showed 
signs of reduced eating, lethargy, and slow movement. 
Some nude mice had prominent back, abdomen or 
tail, indicating successful modeling, with a modeling 
success rate of 82.5%. 33 nude mice were confirmed 
by pathology to have 64 metastatic vertebral lesions, 
among them, there were 7 cervical vertebrae, 24 thoracic 
vertebrae, 16 lumbar vertebrae, 6 sacral vertebrae and 
11 caudal vertebrae.

Comparison of Diagnostic Value
33 lung adenocarcinoma nude mice were found 

to have 80 lesions by MRI, among them, 64 cases 
were confirmed to be metastatic vertebral lesions by 
pathology and 16 cases were benign lesions. Sensitivity 
50/64, which was 78.13%, specificity 9/16, 56.25%, 
accuracy (50+9)/80, which was 73.75%; the positive 

Modeling time Weight (g)

2 weeks
3 weeks
4 weeks
5 weeks
6 weeks
F
P

20.11±1.73
19.91±1.01
18.24±1.97ab
17.03±1.84abc
16.27±1.77abc
33.21
0.001

Table 1. Changes in body weight of 33 nude mice during modeling.

Figure 1. Weight changes of 33 nude mice during modeling. *P< 
0.001; a P< 0.05; b P< 0.05; c P< 0.05.

MRI PET/CT X2 p
TP 50 59
FP 7 4
FN 14 5
TN 9 15
Sensitivity 78.13 92.19 5.006 0.045
Specificity 63.16 78.95 2.076 0.273
Accuracy 74.70 89.16 6.439 0.015
95% confidence interval 1.451~14.529 10.571~185.228 - -
Positive predictive value 87.72 46.15 1.264 5.581
Negative predictive value 93.65 75.00 0.347 0.031

Table 2. Comparison of the diagnostic efficacy of MRI and PET/CT in spinal metastases.
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routes of metastases formation are metastasis of thyroid 
cancer, liver cancer, lung cancer and other malignant 
tumors to the spines (21, 22). In this study, we aimed to 
establish the lung metastasis model of lung cancer stem 
cells in nude mice based on lung cancer cell lines. This 
is for further study on the diagnostic value of MRI and 
PET/CT in spinal metastasis of lung adenocarcinoma in 
nude mice.

The results of this study showed that the sensiti-
vity of MRI in the diagnosis of spinal metastases was 
78.13%; specificity was 56.25%; accuracy was 73.75%; 
the positive predictive value was 87.72%, and the ne-
gative predictive value was 39.13%. The sensitivity 
of PET/CT for the diagnosis of spinal metastases was 
92.19%; specificity was 78.95%; accuracy was 89.16%; 
the positive predictive value was 93.65%, and the nega-
tive predictive value was 75.00%. The specificity and 
positive predictive value of PET/CT for the diagnosis of 
spinal metastases were not significantly different from 
MRI (P> 0.05). The sensitivity, accuracy and negative 
predictive values were significantly higher than those 
of MRI, and the difference was statistically significant 
(P< 0.05). Therefore, PET/CT is superior to MRI in the 
diagnosis of spinal metastases in nude mice. Qu et al 
(23) conducted a meta-analysis of lung cancer patients 
and 18F-FDG PET/CT and MRI were used to assess the 
ability of bone metastases from lung cancer. The results 
showed that 18F-FDG PET/CT was a better imaging 
method for diagnosing bone metastasis than MRI be-
cause 18F-FDG PET/CT has higher diagnostic values 
(sensitivity, specificity). This is consistent with the re-
sults of our study because 18F-FDG PET/CT can direct-
ly detect the presence of tumors through metabolic acti-
vities, rather than indirectly detecting the presence of 
tumors by increasing the conversion of bone minerals, 
which resulted in a higher level of accuracy. In the past 
few decades, PET can provide functional data using the 
glucose analog 18F-FDG. It has risen from the initial re-
search tool to the basic imaging tool for assessing lung 
cancer (24-36). 

In addition, with the development of technology, 
FDG-PET imaging and CT fusion has become a new 
model for a variety of oncology imaging (PET/CT) (37, 
38). The advantage of PET/CT over traditional MRI is 
that it can detect changes in metabolism before struc-
tural changes occur in the lesion tissues, whereas, MRI 
can only detect changes in the structure of the disease 
after structural changes in the tissue (39). Priority up-
take of 18F-FDG in tumor cells produces a high tumor-
background intensity ratio; this contributes to the detec-
tion of tumor lesions and the study of tumor cell charac-
teristics (40). In MRI imaging, bone metastases usually 
appear as discrete foci of low T1 signals, corresponding 
to the replacement of normal fat marrow by malignant 
cells. In the T2-weighted sequence, bone metastases 
usually appear as T2 high intensity. This is due to its in-
creased water content, and sputum enhancement is due 
to increased blood vessels (41, 42). However, the sensi-
tivity of MRI to bone destruction is much lower than its 
sensitivity to intramedullary lesions. Whereas, PET/CT 
can perform images of soft tissues, and observe bone 
tissues and provide the specific anatomical location of 
metastases (43, 44). Clinical trials will be conducted 
in the future to justify the conclusions of this study. In 

summary, PET/CT is superior to MRI in the diagnosis 
of spinal metastases. Its sensitivity, accuracy and nega-
tive predictive value are significantly higher than MRI. 
It is worthy to be further promoted in clinical practice.
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