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Abstract: This study was conducted to predict some quality factors of the annual ryegrass (Lolium multiflorum Lam.) with spectral reflectance values in the 
Forage Crops Laboratory in the Department of Field Crops at the Agriculture Faculty, Akdeniz University, Turkey. In the study, variations resulting from different 
implementations (moisture level, bale density, propionic acid application and storage period) made during haymaking were determined with reflectance values. 
For reflectance measurements, a portable spectroradiometer and a contact probe (plant probe) were used and predicting models were created. Results of this study 
showed that quality factors of dried Annual ryegrass could be predicted with reflectance values, and that reflectances had higher efficacy in the red region for, the 
red and green, and the NIR region for crude protein, crude ash and crude cellulose, respectively. The results reveal that in dried annual ryegrass, there are significant 
relationships between feed quality factors such as crude protein, crude ash and crude cellulose, and reflectance values, and that especially crude protein levels can 
be rapidly and cheaply predicted by using reflectance values.
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Introduction

Annual ryegrass (Lolium multiflorum Lam.), also 
known as Italian ryegrass, is an annual herbaceous for-
age plant of the Poaceae family (1). Widely grown in 
many countries in the temperate zone of the world re-
frence is needed, 

The performance of dairy animals in particular is 
directly linked to quality of feed, and as feed quality 
declines, reductions in yield are also was observed (2). 
Therefore, rapid and accurate determination of feed pa-
rameters has a key role both in nutritional diets of rumi-
nants and in bioenergy conversion (3). But, the mainly 
chemical methods (Kjeldahl, Van Soest, Soxhlet, etc) 
used in quality (nutrients, crude protein, crude fat, crude 
cellulose, crude ash and nitrogen-free substances) de-
termination are considerably expensive and time-con-
suming methods (4, 5). Moreover, the chemicals used 
in analyses may not only negatively affect the health of 
people working in laboratories (6) but will also give rise 
to the necessity of removing chemical waste in order to 
prevent environmental pollution following the analyses 
(7). This also incurs extra costs. To eliminate these dis-
advantages of chemical analyses, in recent years speedy 
and low-cost methods in which chemicals are not used 
have been examined. One of the most important of these 
methods is the remote sensing method in which reflec-
tance values are used.

Remote sensing is described as a discipline that en-
ables the determination of electromagnetic energy val-
ues of objects and bodies from a certain distance without 
coming into contact with them (8, 9). Remote sensing 

systems, which enable information to be gathered about 
signs that occur in objects and are invisible to the naked 
eye (10, 11), are widely used nowadays in many areas 
(for soil mapping, phenology, crop health, land usage, 
forest mapping, geological and hydrological purposes, 
drought and flood monitoring, etc.) (12, 13). 

For quality determination in dried plant materials, 
the NIRS (near-infrared spectroscopy) system has been 
widely used in recent years. The NIRS system was used 
to determine quality factors in some grass types (14), in 
soybean (15), in sorghum (16), in Italian ryegrass (17) 
and in peas (18). However, in these studies the visible 
region of the spectrum (400-700 nm) was not given a 
great deal of attention. Although a large number of stud-
ies on green plants and green vegetation exist with re-
gard to the visible region of the spectrum, an adequate 
number of studies on dried plant materials have not been 
conducted why? This the main question which should 
be answered.

In this study, the prediction of some quality fac-
tors (crude protein, crude ash and crude cellulose) in 
dry samples of annual ryegrass with the remote sens-
ing method has been aimed at. In this way, an effec-
tive method for rapid prediction of nutritional values in 
dried forage crops will be revealed.

Materials and Methods

The study was carried out in the Forage Crops Labo-
ratory in the Department of Field Crops at the Agricul-
ture Faculty, Akdeniz University, Turkey. Plant materials 
(107 samples) were obtained from another study which 
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was to determine effect of moisture level, bale density, 
propionic acid application and storage period on some 
quality factors in Annual ryegrass (Lolium multiflorum 
Lam.) hay and field experiment of study was performed 
in Antalya-Turkey conditions. Prior to the analyses, the 
samples were dried in a drying chamber at 60 °C for 72 
hours and made ready for the chemical analyses by pul-
verising them in a mill. The crude protein, crude ash and 
crude cellulose rates of the samples were determined by 
the Weende analysis method (19). 

The spectral reflectance measurements were taken 
under laboratory conditions in a dark environment ad-
mitting no light from outside. For the measurements, a 
spectroradiometer (ASD Inc., Boulder, CO, USA) (20-
22) that can make reflectance measurements between 
the wavelengths of 325-1075 nm of the electromagnetic 
spectrum and a contact probe (plant probe) were used. 
Contact probe was attached to the spectroradiometer 
(23) and contain a 100 W halogen lamp as an artificial 
light source (24). Also measurement area of this device 
is 1 cm in diameter. Prior to the measurements, each 
plant sample was placed in a glass petri dish 11 cm in di-
ameter and 2 cm in height. Next, the light of the contact 
probe component was turned on and a calibration mea-
surement was taken with a white reference panel (Spec-
tralon® , Labsphere Inc., North Sutton, USA ) (25). Fol-
lowing this measurement, the contact probe was placed 
at the upper part of the sample and the results of mea-
surements taken in different areas of each sample in 5 
repetitions were recorded on the computer. During the 
measurements, the reference panel measurements were 
repeated on each new sample.

For statistical analysis of data, firstly; the mean of 
the 5 repetitive measurements were taken for the re-
flectance value at each wavelength for each samples. 
Stepwise regression analysis in MINITAB statistical 
software was used for statistical analysis. After analysis, 
wavelengths which was associated with the crude pro-
tein, crude ash and crude cellulose levels of the samples 
were determined. Later, predicted models containing 10 
wavelengths were created for each quality factor with 
using these wavelengths. In the reflectance measure-
ments, since there were too many oscillations at wave-
lengths below 400 nm, wavelengths of 325-399 nm 
were not included in the statistical analysis. Therefore, 
wavelengths were classified as bands of 400-500 nm for 
blue, 500-600 nm for green, 600-700 nm for red and 
700-1075 nm for near infra-red were evaluated (26, 27).

Results

In the study, significant relationships were deter-
mined between the quality factors (crude protein, crude 
ash and crude cellulose) of the Annual ryegrass samples 
and the reflectance values. The prediction models creat-

ed using the spectral reflectances and r2 values are given 
in Table 1 (The letter “R” in the equations represents the 
reflectance value at the wavelength next to which it is 
written (e.g. “R670 nm” is the reflectance value at 670 
nm). As can be seen in the table, the r2 value of crude 
protein prediction model was determined as 89.34%. 
When wavelengths of crude protein prediction model 
are classified according to their places in the electro-
magnetic spectrum, it is seen that 3 of them (422, 428, 
446 nm) are in the blue region, 1 of them (527 nm) is in 
the green region and 6 of them (611, 631, 642, 646, 661, 
670 nm) are in the red region of the spectrum. The graph 
showing the relationship between the crude protein 
level predicted by using the prediction model and the 
crude protein level measured in the laboratory analyses 
is shown in Figure 1A. When this figure is examined, it 
can be seen that there are very significant relationships 
between the predicted levels and the measured levels.

As seen in the Table 1, significant relationships be-
tween the reflectance values and crude ash values were 
found, and r2 value was determined as 72.21%.  While 
1 (486 nm) of the wavelengths forming the prediction 
model appear in the blue region of the spectrum, 3 of 
them (548, 581, 596 nm) appear in the green region, 4 of 
them (605, 639, 647, 648 nm) appear in the red region 
and 2 of them (701 and 1012 nm) appear in the near-
infrared region. The relationships between the crude ash 
level predicted by using the prediction model and the 
crude ash level measured in the laboratory analyses can 
be seen in Figure 2B.

In Table 1, the crude cellulose prediction models and 
r2 values are shown. According to the table, the r2 value 
of crude cellulose prediction model was determined as 
56.43%. When the wavelengths in the prediction model 
were classified according to their locations in the spec-
trum, it is seen that 3 of them (405, 411, 425 nm) are 
located in the blue region, 2 of them (666, 674 nm) were 
located in the red region, and 5 of them (1034, 1051, 
1054, 1074, 1075 nm) were located in the near-infrared 
region of the spectrum in the model. The graph showing 
the relationship between the predicted crude cellulose 
level determined in this prediction model and the crude 
cellulose level determined in the laboratory analyses is 
shown in Figure 1C.

Prediction models r2

Crude
Protein

=9,10+(101,6*R670nm)+(-140,6*R661nm)+(121,5*R631nm)+(-54,9*R446nm)+(-171,9*R646nm) 
+(151,0*R642nm) +(26,84*R428nm)+(12,01*R422nm)+(-84,2*R611nm)+(32,4*R527nm) 89.34

Crude
Ash

=11,98+(51,2*R701nm)+(-150,4*R647nm)+(-3,87*R1012nm)+(48,2*R605nm)+(-126,5*R581nm) 
+(138,8*R596nm) +(-103,3*R639nm)+(120,8*R648nm)+(-51,5*R486nm)+(58,2*R548nm) 72.21

Crude
Cellulose

=35,98+(-20,41*R1075nm)+(-457,9*R674nm)+(9,18*R411nm)+(-37,84*R1034nm)+(23,16*R1054nm) 
+(-57,7*R425nm) +(491,8*R666nm)+(16,30*R1051nm)+(7,70*R1074nm)+(8,83*R405nm) 56.43

Table 1. The prediction models and r2 values of quality factors.

Figure 1. Relation between measured contents in laboratory and 
predicted content based on prediction models (A: Crude Protein, 
B: Crude Ash, C: Crude Cellulose).
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crude protein), ADF and NDF values of mixtures con-
taining different pasture plants could be predicted with 
great accuracy by using wavelength reflectance values 
between 400-1100 nm. In another study, Wu et al. (40) 
stated that in sorghum, near-infrared reflectances ap-
pearing at wavelengths of 1180-2492 nm were corre-
lated with crude cellulose content (r2=0.96). Pu et al. 
(41) stated that since water was not present in dried 
vegetation, at a wavelength of 1780 nm appearing in 
the near-infrared region of the spectrum, absorption was 
generated by plant chemicals such as crude cellulose, 
sugar and starch. Ustin and Gamon (42) reported that 
in dried plants, factors such as sugar, nitrogen and cell-
wall substances that increase densities through water 
loss defined the characteristics of absorption and that 
wavelengths of 1750, 2150 and 2300 nm appearing in 
the near-infrared region of the spectrum was very im-
portant in this respect. The results obtained in our study 
show a similarity with these results, and, 5 near-infrared 
wavelengths (1034, 1051, 1054, 1074 and 1075 nm) ap-
pear in the cellulose prediction model.

In conclusion, significant relationships were identi-
fied between the reflectance values and the crude protein 
and crude ash contents of the samples. In the model cre-
ated for crude protein, a greater number of wavelengths 
appeared in the red region of the spectrum. Neverthe-
less, in the model created for crude ash, wavelengths 
appeared entirely in the visible region of the spectrum, 
although most wavelengths were used in the red (four) 
and green (three) regions. In the prediction crude cel-
lulose model, however, 5 of the 10 wavelengths used 
appeared in the NIR region of the spectrum.
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