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Abstract: Genotoxic and cytotoxic effects of curcumin and sunset yellow were tested by the chromosome aberration analysis and cytokinesis-block micronu-
cleus cytome assay in human lymphocyte culture. Water solutions of food dyes, in concentrations of 1, 2, 4 and 8 mM, were added to the cultures at the beginning 
of the cultivation period. Concentrations of 4 and 8 mM of sunset yellow induced significant increase in frequencies of cells with chromosome aberrations. Tested 
concentrations of sunset yellow significantly associated with frequencies of structural aberrations, chromatid-type aberrations, total aberrant cells and micronuclei 
showing considerable dose dependent clastogenic activity. In higher analyzed concentrations, curcumin significantly increased only nuclear buds frequency, sug-
gesting its potential genotoxicity, while sunset yellow showed dose-dependent genotoxic potential. Obtained results point toward favorization of natural coloring 
agents in food consumption and emphasize the need of controlled use of food colorants.
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Introduction

Effects of food coloration on the appetite and food 
attraction are extensively used in food technology (1, 
2). However, modern researches have resulted in the no-
table reduction of the used food colorants (2, 3). Some 
of the synthetic food dyes are associated with the health 
and behavioral risks in children (4, 5, 6) and patients 
(7). Natural food pigments are generally desirable and 
often show protective (8) and antioxidative characteris-
tics (9).

Genotoxicity and mutagenicity data of many food 
dyes are often inconsistent. Sunset yellow has been de-
signated as genotoxic and cytotoxic in human lympho-
cytes (10,11), mice (12), root tip cells of Allium cepa L. 
(13) and Brassica campestris L. (14), but not mutagenic 
in Ames test (15) nor genotoxic in gut micronucleus as-
say in mice (16).  There are also reports of sunset yellow 
contamination with carcinogens (17). Regardless the 
long medicinal and dietary use and increased popularity 
of turmeric, the powdered rhizome of Curcuma longa, 
as well as numerous proposed protective effects of cur-
cumin, major ingredient of turmeric (18), higher applied 
concentrations of curcumin (50 μg/ml) increase chro-
mosome aberrations (19) and micronuclei frequencies 
(20) in human lymphocytes in vitro. Curcumin has been 
proposed as an astonishing therapeutic with activities 
ranging from antiviral and anti-inflammatory to immu-
nemodulating and anticarcinogenic or even efficient in 
treatment of complex diseases (18).

Given that available data regarding food colorants 

genotoxicity, although obtained from relevant tests and 
biomarkers, are often stunted and inconsistent, this 
study aimed to simultaneously evaluate and compare 
genotoxic effects of curcumin and sunset yellow using 
cytokinesis-block micronucleus cytome assay (CBMN-
cyt assay) and chromosome aberration (CA) analysis in 
human lymphocytes in vitro. The significance of this 
study emphasizes the widespread use of food dyes and 
increased interest for consumption of organic products, 
including curcumin.

Materials and Methods

Food dyes
Sunset yellow (E-110) and curcumin (E-100), pur-

chased in the powder form (Sigma-Aldrich Co., St. 
Louis, MO), were used for preparation of water solu-
tions in concentrations of 1, 2, 4 and 8 mM and added 
into prepared growing medium for human lymphocyte 
cultures.

 
Cell cultures and applied assays

Four healthy participants donated peripheral blood 
samples, which were collected into sodium heparin 
vacutainers (BD Vacutainer Systems, Plymouth, UK). 
The participants, under the following criteria: no smo-
king, no exposure to medical ionizing radiation (for at 
least 3 months before the study), no chronic illnesses 
(including diabetes) and no consumption of antibiotics, 
signed informed consent forms. The Scientific Council 
of the Institute for Genetic Engineering and Biotechno-
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logy approved and confirmed the study appropriateness 
to ethics standard.

Using PB-Max Karyotyping medium (Life technolo-
gies, Carlsbad, CA) independent culture replicates (for 
each food colorant, tested concentrations and control) 
were established for applied tests: chromosome aber-
ration analysis and cytokinesis-block micronucleus cy-
tome assay. Cultures were treated respectively with the 
100 μl of the sunset yellow or curcumin water solutions 
(1, 2, 4 and 8 mM) and 100 μl of ddH2O for negative 
controls.

Metaphases, for chromosome aberration analysis, 
were harvested 90 minutes upon colcemid (Invitrogen, 
Carlsbad, CA) treatment (0.18 μg/ml). For the CBMN-
Cyt assay, cytochalasin B addition in the final concen-
tration of 4.5 μg/ml blocked cytokinesis. Following cen-
trifugation, and supernatant removal, cells were treated 
with 0.56% KCl hypotonic solution, fixed with ethanol-
acetic acid and dropped on chilled and coded slides. Air-
dried slides were stained in 5% Giemsa (Life technolo-
gies, Carlsbad, CA). Per each replicate 200 metaphases 
were observed. CBMN-Cyt assay included observation 
of micronuclei, nuclear buds and nucleoplasmic bridges 
in 2000 binuclear cells and a total of 500 cells to calcu-
late nuclear division indexes (NDI and NDCI) (21). 

Statistical analysis
Upon Shapiro-Wilk assessment of distribution nor-

mality, ANOVA (one-way analysis of variance) fol-
lowed by Newman-Keuls multiple comparisons was ap-
plied (MedCalc for Windows Software, version 16.2.0 
Ostend, Belgium). The significance level was set at 
p<0.05. Relationships between parameters frequencies 
and applied concentrations were tested by simple linear 
regression (MedCalc 16.2.0).

Results

Structural aberrations were analyzed in metaphases 
containing 46±1 chromosomes and classified as chro-
matid-type (breaks and minutes) and chromosome-type 
aberrations (breaks, minutes and rearrangements e.g. 
dicentrics). The results of chromosome aberration ana-
lysis are gathered in table 1.

The most frequent aberrations in cultures treated 
with curcumin were chromatid breaks (Figure 1) and 
acentric fragments (Figure 2). No chromosome rear-

rangements were observed neither in curcumin nor in 
sunset yellow treated cultures. Curcumin did not signifi-
cantly affect frequencies of observed chromosome aber-
rations (cht, chr and aberrant cell) in any of the tested 
concentration. Sunset yellow treatments were the most 
effective in induction of acentric fragments (Figure 3), 
followed by chromatid breaks (Figure 4). The observed 
increase in chromosome aberrations frequencies in 4 
and 8 mM sunset yellow treatments has been significant 
exclusively for the frequencies of aberrant cells against 
negative control (F=4.6; p=0.013) (Table 1). Dose-de-
pendent correlation was confirmed between sunset yel-
low concentrations and frequencies of chromatid-type 

Colorant Treatment (N=4) Type of aberration*
cht (a) chr (b) Structural aberrations Σ (a+b) aberrant cells

Control 0.25±0.50 1.75±1.71 2.00±2.16 1.00±0.82

Curcumin

1 mM 1.00±1.41 1.00±0.82 2.00±2.00 2.00±2.00
2 mM 1.75±1.50 0.75±0.50 2.50±1.29 2.50±1.29
4 mM 2.00±1.41 1.75±1.71 3.75±2.99 3.25±2.06
8 mM 1.00±0.82 1.50±0.58 2.50±1.29 2.50±1.29

Sunset 
yellow 

1 mM 0.50±0.58 0.75±0.5 1.25±0.96 1.25±0.96
2 mM 1.00±1.16 1.75±1.26 2.75±1.89 2.00±1.63
4 mM 1.75±0.96 3.00±2.71 4.75±2.22 3.50±0.58a

8 mM 2.00±1.63 2.00±1.41 4.00±1.83 3.50±1.29a

*in 4 replicates; 200 metaphases per each replicate - expressed as the mean±SD; cht - chromatid-type aberrations (a); chr – chromosome type 
aberrations (b); total structural aberrations Σ(a+b). aSignificantly increased against negative control (p<0.05).

Table 1. Chromosome aberrations in human lymphocytes treated with curcumin and sunset yellow.

Figure 1. Chromatid break, curcumin 4 mM.

Figure 2. Acentric fragment, curcumin 4 mM.
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genotoxic to human lymphocytes (19), as well as higher 
(10-40 mg/ml), previously tested concentrations of sun-
set yellow (10).

Acceptable daily intake (ADI) level for curcumin 
is 3 mg/kg/bw/day (22). Reported levels of maximum 
exposure to the sunset yellow are generally below the 
1 mg/kg/bw/day, although it could be higher in child-
ren. The safety of sunset yellow was re-evaluated and 
in 2009 EFSA set a temporary ADI of 1 mg/kg/ bw/day 
(from previous of 2.5 mg/kg/bw/day) with the recom-
mendation for further tests to be conducted (23). Esti-
mating that consumers´ exposure to sunset yellow is 
well below in 2014 EFSA has established an ADI of 4 
mg/kg bw/day for all age groups (24). However, sunset 
yellow is banned in Norway and Finland (25) as well as 
in the United States and Japan (26). 

Despite protective and antioxidative properties, na-
tural food colorants often lack stability, while adverse 
effects for some synthetic food colorants are proven (2, 
12, 27-29). Concerns in food dyes consumption also 
come from proposed cumulative effects of food colo-
rants used without proper evaluation (30) as well as 
from the numerous food products that contain food dyes 
and contribute to the total exposure to food colorants 
(24). 

Therapeutical and protective properties make curcu-
min one of the most extensively studied naturally-de-
rived products. However, both benefitial (18, 20) and 

aberrations (p=0.01), structural aberrations (p=0.04) 
and aberrant cells (p=0.015). Effects of curcumin on 
chromosome aberrations induction were not dose rela-
ted.

CBMN-cyt assay results are shown in table 2. Cur-
cumin, in 4 and 8 mM treatments significantly increased 
frequency of nuclear buds against control and 1 mM 
treatment (F=6.761; p=0.003). The frequency of nuclear 
buds showed significant association with the applied 
concentrations of curcumin (p=0.006). Sunset yellow 
was not genotoxic nor cytotoxic in CBMN-cyt assay, 
although increase in applied concentrations of sunset 
yellow significantly correlated with the increase in mi-
cronuclei frequencies (p=0.008).

Discussion

Although numerous studies regarding curcumin and 
sunset yellow genotoxicity have been previously per-
formed (10, 19, 20), none of them combined chromo-
some aberrations analysis and CBMN-cyt assay nor 
simultaneously evaluated curcumin and sunset yellow 
effects in the same conditions in vitro. Concentrations of 
curcumin and sunset yellow, tested in this research (1-8 
mM), correspond to 7-56 μg/ml and 8-64 μg/ml respec-
tively. The tested concentrations were set according to 
the study of Sebastià et al. (19), since concentrations 
of curcumin, higher than 50 μg/ml, are reported to be 

Figure 3. Acentric fragments, sunset yellow 4 mM. Figure 4. Chromatid break, sunset yellow 8 mM.

Colorant Treatment (N=4) Genotoxicity biomarkers* Cytotoxicity indexes** 
MNi NBs NPBs NDI NDCI

Control 19.75±6.19 5.25±2.63 2.00±1.41 1.48±0.28 1.47±0.27

Curcumin

1 mM 27.50±8.58 6.50±1.29 4.00±2.00 1.43±0.19 1.43±0.19
2 mM 28.25±6.45 8.751.89 4.00±2.94 1.48±0.27 1.47±0.26
4 mM 32.25±12.04 13.00±2.16 a 4.25±2.22 1.36±0.18 1.35±0.18
8 mM 27.25±7.14 10.75±3.00 a 4.25±2.75 1.34±0.11 1.33±0.11

Sunset 
yellow 

1 mM 29.25±9.22 9.50±2.65 3.75±2.22 1.38±0.20 1.38±0.20
2 mM 33.25±4.57 8.755.68 6.25±4.99 1.39±0.19 1.38±0.18
4 mM 35.25±10.01 10.00±4.08 6.75±3.30 1.46±0.18 1.46±0.18
8 mM 40.50±13.63 10.75±2.75 7.25±6.13 1.44±0.22 1.43±0.22

*in 4 replicates, 2000 BN cell per each replicate; **500 analyzed cells per each replicate - expressed as the mean±SD; BN – binuclear cell; MNi 
– micronuclei; NBs – nuclear buds; NPBs – nucleoplasmic bridges; NDI – nuclear division index; NDCI – nuclear division cytotoxicity index. 
a Significantly increased against negative control and 1 mM treatment (p<0.05).

Table 2. CBMN-cyt assay of lymphocytes treated with curcumin and sunset yellow.
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undesirable effects are observed (18, 19). However, cur-
cumin has also been identified as a PAINS (pan assay 
interference) compound (31) due to its interfering with 
readout in different assays and an IMPS (invalid meta-
bolic panaceas) compound (32). That may be the cause 
for unproven beneficial effects of curcumin in numerous 
conducted clinical trials (18). Previous genotoxicity and 
cytotoxicity analysis of curcumin in concentrations ran-
ging from 0 to 50 µg/ml have shown that higher concen-
trations induce chromosome aberrations, mainly acen-
tric fragments, in human lymphocytes in vitro (19). The 
higher used concentrations of curcumin, from the range 
of 0.5 to 128 mg/ml, increase micronuclei frequency but 
also have significant effect on the reduction of micronu-
clei frequency induced by cisplatin in PC12 cells (20). 
Similar findings are found in HepG2 cells. In concentra-
tions of 8 and 16 μg/ml curcumin significantly increases 
micronuclei frequency in HepG2 cells although lower 
concentrations (2 μg/ml) significantly reduce frequency 
of cyclophosphamide induced micronuclei (33) or pa-
rathion induced sister chromatid exchanges (34). The 
frequency of micronuclei, in human lymphocytes upon 
irradiation by 131I significantly decreases after curcumin 
treatment in concentrations of 5, 10, and 50 μg/ml (35). 

Differing from findings of Sebastia et al. (19), we 
did not observe remarkable increase in chromosome 
aberrations after curcumin treatment, even in the high-
est applied concentration of 8 mM (56 µg/ml). How-
ever, we revealed significant dose-dependent increase 
in frequency of nuclear buds. Nuclear buds are struc-
tures responsible for the expulsion of undesirable DNA 
content (36) and extra chromosomes from the cell (37) 
through recombination between homologous regions 
within amplified sequences forming acentric fragment 
or double minutes (38). As intermediate phase in micro-
nuclei formation, nuclear buds present reliable markers 
of genotoxicity. This finding additionally points toward 
increased genotoxicity of higher curcumin concentra-
tions. High SD values for genotoxicity biomarker in 
CBMN-cyt assay are evidenced in control but also cul-
tures treated with curcumin and sunset yellow. Micro-
nuclei and consequently their precursors, nuclear buds 
are highly influenced by demographic variables and/or 
dietary factors showing intra- and inter-individual vari-
ation with the SD reported to range from 3.3-17.7 in 
healthy population (39).   

Additional concern regarding curcumin′s activity is 
its variable purity and chemical instability both in vitro 
and in vivo. Pharmacokinetic and pharmacological pro-
perties of curcumin, determined by available ADMET 
qualities (absorption, distribution, metabolism, excre-
tion and toxicology) are rather not promising, especial-
ly regarding low absorption an bioavailability (40) and 
efforts to improve them were so far unsuccessful (18). 
However, further ADMET research is recommended for 
the compounds of curcumin mixture, following its cha-
racterization.     

Frequency of observed genotoxicity and cytotoxic-
ity parameters between sunset yellow treatments and 
negative control did not significantly differ according 
to ANOVA. However, simple linear regression showed 
significant linear associations between concentra-
tions and following parameters:  chromatid - type and 
structural aberrations, aberrant cells and micronuclei. 

Significant increase in micronuclei frequency has also 
been detected in human lymphocytes by Kus and Ero-
glu (10), although in higher applied concentrations (10, 
20, 30 and 40 mg/ml), compared to those that we tested 
(equal to 8-64 µg/ml). In the research of Sayed and col-
leagues (12) it has been demonstrated that sunset yellow 
increases frequencies of sister chromatid exchanges and 
chromosome aberrations in mice, especially in repeated 
oral treatments. Nevertheless, selenium, in combination 
with A, C and E vitamins, significantly reduces geno-
toxic effects of sunset yellow. Sunset yellow is not gen-
otoxic in the gut micronucleus assay in mice (16) nor 
in Ames test, with or without metabolic activation (15). 

Swaroop and colleagues (11) have found that genotox-
icity of sunset yellow in human lymphocytes observed 
by cytokinesis-block micronucleus cytome assay was 
weaker in comparison with the other tested synthetic 
colorants or their combinations.

Despite the fact that dose-dependent clastogenic 
potential of sunset yellow has been determined as well 
as the increase in nuclear buds frequency in higher ap-
plied concentrations of curcumin, results of this work 
imply that those tested food colorants are not remark-
able genotoxins in applied concentrations. However, the 
controlled use and continuous investigation, including 
additional ADMET analysis in vivo, of food colorants 
is the crucial to avoid undesirable effects and achieve 
meaningful, interpretable results. Those should be con-
sidered along with expanded use of curcumin due to its 
protective properties.
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