Issue
Copyright (c) 2024 Mejdi Snoussi, Ramzi Hadj Lajimi, Salman Latif, Walid Sabri Hamadou, Mousa Alreshidi, Syed Amir Ashraf, Mitesh Patel, Jamal R. Humaidi, El Hassane Anouar, Adel Kadri, Emira Noumi
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Green synthesis and characterization of silver nanoparticles from Ducrosia flabellifolia Boiss. aqueous extract: Anti-quorum sensing screening and antimicrobial activities against ESKAPE pathogens
Corresponding Author(s) : Mejdi Snoussi
Cellular and Molecular Biology,
Vol. 70 No. 2: Issue 2
Abstract
Biosynthesis of silver nanoparticles using natural compounds derived from plant kingdom is currently used as safe and low-cost technique for nanoparticles synthesis with important abilities to inhibit multidrug resistant microorganisms (MDR). ESKAPE pathogens, especially MDR ones, are widely spread in hospital and intensive care units. In the present study, AgNPs using Ducrosia flabellifolia aqueous extract were synthesized using a reduction method. The green synthesized D. flabellifolia-AgNPs were characterized by UV–Vis spectrophotometer, Scanning electron microscopy (SEM), and X-ray diffraction assays. The tested D. flabellifolia aqueous extract was tested for its chemical composition using Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (LC-ESI-MS). Anti-quorum sensing and anti-ESKAPE potential of D. flabellifolia-AgNPs was also performed. Results from LC-ESI-MS technique revealed the identification of chlorogenic acid, protocatechuic acid, ferulic acid, caffeic acid, 2,5-dihydroxybenzoic acid, and gallic acid as main phytoconstituents. Indeed, the characterization of newly synthetized D. flabellifolia-AgNPs revealed spherical shape with mean particle size about 16.961±2.914 nm. Bio-reduction of silver was confirmed by the maximum surface plasmon resonance of D. flabellifolia-AgNPs at 430 nm. Newly synthetized D. flabellifolia-AgNPs were found to possess important anti-ESKAPE activity with low minimal inhibitory concentrations (MICs) ranging from 0.078 to 0.312 mg/mL, and low minimal bactericidal concentrations (MBCs) varying from 0.312 to 0.625 mg/mL. Moreover, D. flabellifolia-AgNPs were active against Candida utilis ATCC 9255, C. tropicalis ATCC 1362, and C. albicans ATCC 20402 with high mean diameter of growth inhibition at 5 mg/mL, low MICs, and minimal fungicidal concentrations values (MFCs). The newly synthetized D. flabellifolia-AgNPs were able to inhibit violacein production in Chromobacterium violaceum, pyocyanin in Pseudomonas aeruginosa starter strains. Hence, the newly synthesized silver nanoparticles using D. flabellifolia aqueous extract can be used as an effective alternative to combat ESKAPE microorganisms. These silver nanoparticles can attenuate virulence of Gram-negative bacteria by interfering with the quorum sensing system and inhibiting cell-to-cell communication.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX