Issue
Leucine can modulate the expression of proteins related to protein degradation signalling under mTOR inhibition in C2C12 cells
Corresponding Author(s) : Maria Cristina Cintra Gomes-Marcondes
Cellular and Molecular Biology,
Vol. 64 No. 10: Issue 10
Abstract
Many metabolic syndromes lead to energetic disturbs which ends to an intense catabolic state. The branched-chain amino acid leucine shows very positive effects on muscle protein metabolism. However, it is still not clear how leucine acts improving the protein turnover. This study aimed to evaluate in vitro the effects of leucine supplementation in minimising the signalling pathway of protein degradation when mTOR was inhibited. Our studies were conducted in murine C2C12 myotubes exposed to 2mM leucine or 2mM isoleucine in control situation and compared to the inhibition of mTOR by rapamycin. Then, the expression of proteins related to protein synthesis and degradation signalling pathway was obtained by Western Blot. At this concentration, the leucine was sufficient to maintain the expression of proteins evaluated as in control situation. However, when the cells were exposed to rapamycin (80nM), leucine inhibited the expression of SMAD and FoxO3a, showing that leucine was able to modulate the degradation pathway when protein synthesis is compromised. Furthermore, leucine had no effect in modifying the expression of subunits of ubiquitin-proteasome system, showing that leucine had no direct effect in ubiquitin-proteasome system, but acted leading to the phosphorylation of SMAD and FoxO3, which inhibited the activity of transcriptional of these proteins. No similar results were observed in cells exposed to isoleucine under the same experimental protocol, likely showing that leucine has specific action over another branched-chain amino acids. In conclusion, the present study shows that leucine can modulate degradation pathways even under inhibition of mTOR by rapamycin.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Wolfe RR. The underappreciated role of muscle in health and disease. American Journal of Clinical Nutrition. 2006. pp. 475–482. doi:84/3/475 [pii]
- Argilés JM, Campos N, Lopez-Pedrosa JM, Rueda R, Rodriguez-Mañas L. Skeletal Muscle Regulates Metabolism via Interorgan Crosstalk: Roles in Health and Disease. J Am Med Dir Assoc. Elsevier Inc.; 2016; doi:10.1016/j.jamda.2016.04.019
- Anthony JC, Anthony TG, Kimball SR, Jefferson LS. Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J Nutr. 2001;131: 856S–860S. Available: http://www.ncbi.nlm.nih.gov/pubmed/11238774
- Sandri M. Protein Breakdown in Cancer Cachexia. Semin Cell Dev Biol. Elsevier Ltd; 2015; doi:10.1016/j.semcdb.2015.11.002
- Hara K, Maruki Y, Long X, Yoshino K ichi, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110: 177–189. doi:10.1016/S0092-8674(02)00833-4
- Kim D-H, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex that Signals to the Cell Growth Machinery. Cell. 2002;110: 163–175. doi:10.1016/S0092-8674(02)00808-5
- Sarbassov DD, Ali SM, Kim D, Guertin DA, Latek RR, Erdjument-bromage H, et al. Rictor , a Novel Binding Partner of mTOR , Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton. 2004;14: 1296–1302. doi:10.1016/j
- Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006;441: 424–430. doi:10.1038/nature04869
- Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12: 21–35. doi:10.1038/nrm3025
- Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6: 1122–1128. doi:10.1038/ncb1183
- Proud CG. A New Link in the Chain from Amino Acids to mTORC1 Activation. Molecular Cell. 2011. pp. 7–8. doi:10.1016/j.molcel.2011.09.004
- Proud CG. mTORC1 regulates the efficiency and cellular capacity for protein synthesis. Biochem Soc Trans. 2013;41: 923–6. doi:10.1042/BST20130036
- Holecek M, Kovarik M. Alterations in protein metabolism and amino acid concentrations in rats fed by a high-protein (casein-enriched) diet - Effect of starvation. Food Chem Toxicol. 2011;49: 3336–3342. doi:10.1016/j.fct.2011.09.016
- Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS, Kimball SR. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr. 2000;130: 2413–2419.
- Anthony JC, Lang CH, Crozier SJ, Anthony TG, MacLean D a, Kimball SR, et al. Contribution of insulin to the translational control of protein synthesis in skeletal muscle by leucine. Am J Physiol Endocrinol Metab. 2002;282: E1092–E1101. doi:10.1152/ajpendo.00208.2001
- Coffey VG, Moore DR, Burd NA, Rerecich T, Stellingwerff T, Garnham AP, et al. Nutrient provision increases signalling and protein synthesis in human skeletal muscle after repeated sprints. Eur J Appl Physiol. 2011;111: 1473–1483. doi:10.1007/s00421-010-1768-0
- Rowlands DS, Nelson AR, Raymond F, Metairon S, Mansourian R, Clarke J, et al. Protein-leucine ingestion activates a regenerative inflammo-myogenic transcriptome in skeletal muscle following intense endurance exercise. Physiol Genomics. 2016;48: 21–32. doi:10.1152/physiolgenomics.00068.2015
- Khedr NF, Khedr EG. Branched chain amino acids supplementation modulates TGF-beta1/Smad signaling pathway and interleukins in CCl4 -induced liver fibrosis. Fundam Clin Pharmacol. England; 2017;31: 534–545. doi:10.1111/fcp.12297
- Pereira MG, Baptista IL, Carlassara EOC, Moriscot AS, Aoki MS, Miyabara EH. Leucine supplementation improves skeletal muscle regeneration after cryolesion in rats. PLoS One. 2014;9. doi:10.1371/journal.pone.0085283
- Baptista IL, Silvestre JG, Silva WJ, Labeit S, Moriscot AS. FoxO3a suppression and VPS34 activity are essential to anti-atrophic effects of leucine in skeletal muscle. Cell Tissue Res. Cell and Tissue Research; 2017;369: 381–394. doi:10.1007/s00441-017-2614-z
- Orino E, Tanaka K, Tamura T, Sone S, Ogura T, Ichihara A. ATP-dependent reversible association of proteasomes with multiple protein components to form 26S complexes that degrade ubiquitinated proteins in human HL-60 cells. FEBS Lett. 1991;284: 206–210. doi:10.1016/0014-5793(91)80686-W
- Bradford MM. A Rapid and Sensitive Method for the Quantitation Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. 1976;254: 248–254.
- Gonçalves EM, Salomí£o EM, Gomes-Marcondes MCC. Leucine modulates the effect of Walker factor, a proteolysis-inducing factor-like protein from Walker tumours, on gene expression and cellular activity in C2C12 myotubes. Cytokine. 2013;64: 343–350. doi:10.1016/j.cyto.2013.05.018
- Girón MD, Vílchez JD, Salto R, Manzano M, Sevillano N, Campos N, et al. Conversion of leucine to β -hydroxy- β -methylbutyrate by α -keto isocaproate dioxygenase is required for a potent stimulation of protein synthesis in L6 rat myotubes. 2016;1: 68–78. doi:10.1002/jcsm.12032
- Areta JL, Hawley J a., Ye J-M, Chan MHS, Coffey VG. Increasing leucine concentration stimulates mechanistic target of rapamycin signaling and cell growth in C2C12 skeletal muscle cells. Nutr Res. Elsevier Inc.; 2014;34: 1000–1007. doi:10.1016/j.nutres.2014.09.011
- Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci. 2005;102: 14238–14243. doi:10.1073/pnas.0506925102
- Wang X, Proud CG. The mTOR pathway in the control of protein synthesis. Physiology (Bethesda). 2006;21: 362–9. doi:10.1152/physiol.00024.2006
- Saxton RA, Sabatini DM. Review. Cell. Elsevier Inc.; 2017;168: 960–976. doi:10.1016/j.cell.2017.02.004
- Tavares MR, Pavan ICB, Amaral CL, Meneguello L, Luchessi AD, Simabuco FM. The S6K protein family in health and disease. Life Sci. Elsevier Inc.; 2015;131: 1–10. doi:10.1016/j.lfs.2015.03.001
- Fingar DC, Salama S, Tsou C, Harlow E, Blenis J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 2002;16: 1472–1487. doi:10.1101/gad.995802
- Weng QP, Kozlowski M, Belham C, Zhang A, Comb MJ, Avruch J. Regulation of the p70 S6 kinase by phosphorylation in vivo. Analysis using site-specifig antiphosphopeptide antibodies. J Biol CHem. 1998;273: 16621–16629.
- Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R, et al. Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol. 2009;296: C1248–C1257. doi:10.1152/ajpcell.00104.2009
References
Wolfe RR. The underappreciated role of muscle in health and disease. American Journal of Clinical Nutrition. 2006. pp. 475–482. doi:84/3/475 [pii]
Argilés JM, Campos N, Lopez-Pedrosa JM, Rueda R, Rodriguez-Mañas L. Skeletal Muscle Regulates Metabolism via Interorgan Crosstalk: Roles in Health and Disease. J Am Med Dir Assoc. Elsevier Inc.; 2016; doi:10.1016/j.jamda.2016.04.019
Anthony JC, Anthony TG, Kimball SR, Jefferson LS. Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J Nutr. 2001;131: 856S–860S. Available: http://www.ncbi.nlm.nih.gov/pubmed/11238774
Sandri M. Protein Breakdown in Cancer Cachexia. Semin Cell Dev Biol. Elsevier Ltd; 2015; doi:10.1016/j.semcdb.2015.11.002
Hara K, Maruki Y, Long X, Yoshino K ichi, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110: 177–189. doi:10.1016/S0092-8674(02)00833-4
Kim D-H, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex that Signals to the Cell Growth Machinery. Cell. 2002;110: 163–175. doi:10.1016/S0092-8674(02)00808-5
Sarbassov DD, Ali SM, Kim D, Guertin DA, Latek RR, Erdjument-bromage H, et al. Rictor , a Novel Binding Partner of mTOR , Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton. 2004;14: 1296–1302. doi:10.1016/j
Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006;441: 424–430. doi:10.1038/nature04869
Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12: 21–35. doi:10.1038/nrm3025
Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6: 1122–1128. doi:10.1038/ncb1183
Proud CG. A New Link in the Chain from Amino Acids to mTORC1 Activation. Molecular Cell. 2011. pp. 7–8. doi:10.1016/j.molcel.2011.09.004
Proud CG. mTORC1 regulates the efficiency and cellular capacity for protein synthesis. Biochem Soc Trans. 2013;41: 923–6. doi:10.1042/BST20130036
Holecek M, Kovarik M. Alterations in protein metabolism and amino acid concentrations in rats fed by a high-protein (casein-enriched) diet - Effect of starvation. Food Chem Toxicol. 2011;49: 3336–3342. doi:10.1016/j.fct.2011.09.016
Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS, Kimball SR. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr. 2000;130: 2413–2419.
Anthony JC, Lang CH, Crozier SJ, Anthony TG, MacLean D a, Kimball SR, et al. Contribution of insulin to the translational control of protein synthesis in skeletal muscle by leucine. Am J Physiol Endocrinol Metab. 2002;282: E1092–E1101. doi:10.1152/ajpendo.00208.2001
Coffey VG, Moore DR, Burd NA, Rerecich T, Stellingwerff T, Garnham AP, et al. Nutrient provision increases signalling and protein synthesis in human skeletal muscle after repeated sprints. Eur J Appl Physiol. 2011;111: 1473–1483. doi:10.1007/s00421-010-1768-0
Rowlands DS, Nelson AR, Raymond F, Metairon S, Mansourian R, Clarke J, et al. Protein-leucine ingestion activates a regenerative inflammo-myogenic transcriptome in skeletal muscle following intense endurance exercise. Physiol Genomics. 2016;48: 21–32. doi:10.1152/physiolgenomics.00068.2015
Khedr NF, Khedr EG. Branched chain amino acids supplementation modulates TGF-beta1/Smad signaling pathway and interleukins in CCl4 -induced liver fibrosis. Fundam Clin Pharmacol. England; 2017;31: 534–545. doi:10.1111/fcp.12297
Pereira MG, Baptista IL, Carlassara EOC, Moriscot AS, Aoki MS, Miyabara EH. Leucine supplementation improves skeletal muscle regeneration after cryolesion in rats. PLoS One. 2014;9. doi:10.1371/journal.pone.0085283
Baptista IL, Silvestre JG, Silva WJ, Labeit S, Moriscot AS. FoxO3a suppression and VPS34 activity are essential to anti-atrophic effects of leucine in skeletal muscle. Cell Tissue Res. Cell and Tissue Research; 2017;369: 381–394. doi:10.1007/s00441-017-2614-z
Orino E, Tanaka K, Tamura T, Sone S, Ogura T, Ichihara A. ATP-dependent reversible association of proteasomes with multiple protein components to form 26S complexes that degrade ubiquitinated proteins in human HL-60 cells. FEBS Lett. 1991;284: 206–210. doi:10.1016/0014-5793(91)80686-W
Bradford MM. A Rapid and Sensitive Method for the Quantitation Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. 1976;254: 248–254.
Gonçalves EM, Salomí£o EM, Gomes-Marcondes MCC. Leucine modulates the effect of Walker factor, a proteolysis-inducing factor-like protein from Walker tumours, on gene expression and cellular activity in C2C12 myotubes. Cytokine. 2013;64: 343–350. doi:10.1016/j.cyto.2013.05.018
Girón MD, Vílchez JD, Salto R, Manzano M, Sevillano N, Campos N, et al. Conversion of leucine to β -hydroxy- β -methylbutyrate by α -keto isocaproate dioxygenase is required for a potent stimulation of protein synthesis in L6 rat myotubes. 2016;1: 68–78. doi:10.1002/jcsm.12032
Areta JL, Hawley J a., Ye J-M, Chan MHS, Coffey VG. Increasing leucine concentration stimulates mechanistic target of rapamycin signaling and cell growth in C2C12 skeletal muscle cells. Nutr Res. Elsevier Inc.; 2014;34: 1000–1007. doi:10.1016/j.nutres.2014.09.011
Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci. 2005;102: 14238–14243. doi:10.1073/pnas.0506925102
Wang X, Proud CG. The mTOR pathway in the control of protein synthesis. Physiology (Bethesda). 2006;21: 362–9. doi:10.1152/physiol.00024.2006
Saxton RA, Sabatini DM. Review. Cell. Elsevier Inc.; 2017;168: 960–976. doi:10.1016/j.cell.2017.02.004
Tavares MR, Pavan ICB, Amaral CL, Meneguello L, Luchessi AD, Simabuco FM. The S6K protein family in health and disease. Life Sci. Elsevier Inc.; 2015;131: 1–10. doi:10.1016/j.lfs.2015.03.001
Fingar DC, Salama S, Tsou C, Harlow E, Blenis J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 2002;16: 1472–1487. doi:10.1101/gad.995802
Weng QP, Kozlowski M, Belham C, Zhang A, Comb MJ, Avruch J. Regulation of the p70 S6 kinase by phosphorylation in vivo. Analysis using site-specifig antiphosphopeptide antibodies. J Biol CHem. 1998;273: 16621–16629.
Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R, et al. Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol. 2009;296: C1248–C1257. doi:10.1152/ajpcell.00104.2009