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1. Introduction
Mesenchymal stem cells (MSCs) possess the ability to 

self-renew and differentiate into diverse cell types, includ-
ing muscle, fat, cartilage, bone, and the supportive tissue 
in bone marrow. These versatile cells reside in various tis-
sues of both adult organisms and developing embryos, in-
cluding bone marrow, adipose tissue, the umbilical cord, 
and the placenta [1].

The immunomodulatory characteristics of MSCs make 
them excellent candidates for cell-based therapeutic agents 
against immune-mediated diseases. They modulate im-
mune responses by interacting with various immune cells, 

including T and B cells, monocytes, and macrophages, 
through the secretion of multiple inflammatory mediators 
and other signaling molecules  Therefore, MSCs can be 
preconditioned with several elements to resist oxidative 
stress [2-5].

MSCs are remarkably adept at aiding in tissue repair 
and regeneration, making them invaluable in the treatment 
of inflammation-associated diseases. In environments 
characterized by high levels of oxidative stress and in-
flammation—essentially, conditions that are detrimental to 
most cells—MSCs retain their ability to function and con-
tribute to tissue repair [2, 3]. MSCs demonstrated remark-
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able resilience in the harsh oxidative environment induced 
by high concentrations of hydrogen peroxide (H2O2). Pre-
conditioning MSCs with H2O2 not only enhanced their 
functional activities but also modulated the expression of 
genes involved in crucial cellular processes. This suggests 
that preconditioning with H2O2 could potentially improve 
the therapeutic efficacy of MSCs in regenerative medicine 
applications [6]. 

Also, MSCs have been shown to possess remarkable 
protective effects on endothelial cells, shielding them from 
the detrimental effects of H2O2 and monocytes. This prop-
erty makes them promising candidates for cell-based ther-
apies in inflammation-associated diseases [7, 8]. Treating 
mesenchymal stem cells (MSCs) with interleukin-1 beta 
(IL-1β) has been shown to enhance their therapeutic po-
tential by increasing their production of anti-inflammatory 
and pro-growth factors. Additionally, IL-1β appears to 
bolster the ability of MSCs to modulate the immune sys-
tem, potentially improving the success of stem cell trans-
plantation therapies [9].

This study investigated the response of human bone 
marrow mesenchymal stem cells (hBM-MSCs) to vary-
ing concentrations of IL-1β, a cytokine known to mediate 
stress responses within the body [10]. The effects of these 
IL-1β concentrations on the cells' release of key molecules 
involved in regulating immune defense and inflammatory 
reactions were also tested. Additionally, the study stud-
ied how this inflammatory microenvironment influences 
hBM-MSC activities such as adhesion, proliferation, and 
migration.

2. Material and methods
2.1. Cultivation of human Bone Marrow Mesenchymal 
Stem Cells

Immortalized hBM-MSCs served as a model for pri-
mary hBM-MSCs in this study. The hBM-MSCs were ob-
tained from Lonza Group Ltd. These immortalized cells 
have been extensively characterized, exhibiting charac-
teristics comparable to primary hBM-MSCs [11]. The 
cells were grown in Dulbecco's Modified Eagle Medium 
(DMEM) with added 0.25 mol/L D-glucose, 10% fetal bo-
vine serum (FBS, US origin), 1x penicillin-streptomycin, 
and a mix of NAA (all from Gibco-Invitrogen, USA). 
The cells were grown to 70-80% confluence in DMEM at 
50,000 cells/ml density (Figure 1).

2.2. Enhancement of hBM-MSC adhesion and prolif-
eration in response to IL-1β stimulation

The research involved four distinct treatment groups for 
hBM-MSCs, as detailed in Table 1. To evaluate the adhe-
sion and growth of hBM-MSCs, the investigators utilized 
the xCELLigence system, a real-time cellular analysis in-
strument from Roche Diagnostics, based in Mannheim, 
Germany [Real-Time Cell Analysis dual purpose (RTCA 
DP)]. This instrument continuously monitors and records 
changes in electrical impedance, which are subsequently 

represented as a cell index value [12].
In this study, a population of 20,000 hBM-MSCs was 

cultured using a complete hBM-MSCs growth medium, 
adhering to the previously established protocol. The con-
trol batch and three experimental batches were exposed to 
incremental levels of IL-1β (100, 50, and 10 ng/ml) within 
the wells of a 16-well cell culture nanochip-plate (E-Plate 
16, Roche Diagnostics, catalog number 05469813001). 
These culture plates were then installed in the xCELLi-
gence system, which was maintained at approximately 
37°C. The progression of the hBM-MSC cell index was 
meticulously monitored using the xCELLigence system. 
Initial cell adhesion was observed immediately after cell 
introduction to the culture wells, followed by cell prolif-
eration observed over a period of 24 to 72 hours. 

Data collection and analysis were performed using 
methodologies consistent with those outlined in previ-
ous scholarly articles. The xCELLigence system was em-
ployed to dynamically evaluate the attachment and growth 
of hBM-MSCs. The cells were cultured in varying levels of 
IL-1β, with their activity continuously monitored through 
the xCELLigence system's ongoing electrical impedance 
recordings. This method enabled the research team to in-
vestigate the impact of IL-1β on hBM-MSCs over a de-
fined timeframe, generating data that were subsequently 
processed following established analytical protocols [12].

Groups Description 
1 hBM-MSCs cultured alone (Control group)
2 hBM-MSCs cultured with IL-1β 10 ng/ml 
3 hBM-MSCs cultured with IL-1β 50 ng/ml
4 hBM-MSCs cultured with IL-1β 50 ng/ml

Table 1. hBM-MSCs treatment groups.

Fig. 1. Enhancing therapeutic efficacy: IL-1β primed human bone 
marrow mesenchymal stem cells (hBM-MSCs)
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ml) showed the highest doubling time and lowest growth 
(Figure 2).

The hBM-MSCs proliferated differently in the four 
groups and the proliferation was altered by high concen-
trations of IL-1β. Proliferation improved after stimulation 
with IL-1β with 10 and 50 ng/ml. Yet, when exposed to 
100 ng/ml of IL-1β, there was a significant decrease in 
proliferation compared to the control group (Figure 3).

hBM-MSCs exhibited no migration when cultured in 
1% FBS serum. However, migration was significantly in-
creased in cells treated with 10% FBS serum and IL-1β 
(Figure 3). Exposure of hBM-MSCs to 10 ng/ml of IL-
1β induced the most prominent enhancement of migration 
compared to the control. A dose of 50 ng/ml of IL-1β also 
promoted a moderate improvement in hBM-MSCs migra-
tion. Conversely, treating hBM-MSCs with 100 ng/ml of 

2.3. hBM-MSCs migration in response to IL-1β
Migration of hBM-MSCs was evaluated using the 

xCELLigence system in a CIM plate (Roche Diagnos-
tics GmbH), adhering to protocols established in previous 
studies. Initially, 20,000 hBM-MSCs from the first group 
were seeded alone in the upper chamber. For the remain-
ing three groups, 100 μL of hBM-MSCs culture medium 
was added to the upper chamber, and IL-1β was introduced 
into the lower chamber. Following a 30-minute incubation 
at room temperature to allow cell attachment to the mem-
brane, the xCELLigence system commenced tracking cell 
migration [12]. Results were recorded as cell index values 
at the 24-hour mark. A 10% FBS solution served as the 
positive control for migration, while a 1% FBS solution 
acted as the negative control.

2.4. Analysis of gene expression with real-time quanti-
tative PCR (RT-qPCR) 

Expression levels of genes related to cytokines, che-
mokines, and adhesion molecules—including colony-
stimulating factors 1 and 2 (CSF1, CSF2), C-C chemokine 
receptor type 2 (CCR2), C-X-C chemokine receptor type 
1 and 3 (CXCL1, CXCL3), and IL-1β—were investigated 
in hBM-MSCs after a 24-hour IL-1β induction at vary-
ing concentrations. Complete RNA was extracted from 
the hBM-MSCs, converted to cDNA, and used with a set 
of primers (Table 2). The expression analysis was carried 
out using a qRT-PCR Via VII system (ABI, USA) in three 
replicates. Data interpretation followed previously estab-
lished methods, and the relative gene expression was re-
ported as fold changes using the 2-ΔΔCT calculation method.

2.5. Statistical analysis 
We systematically organized and evaluated the col-

lected data using the Kruskal-Wallis nonparametric test in 
SPSS software version 22. A P-value less than 0.05 was 
considered statistically significant.

3. Results
A similar adhesion pattern, of hBM-MSCs in all 

groups, to the plastic surface, was detected. The attach-
ment of the hBM-MSCs was not affected by the different 
concentrations of IL-1β as they were attached at almost 
the same rate as the control group. An inverse relationship 
between increased IL-1β concentrations and cell growth 
was observed. The highest IL-1β concentration (100 ng/

Gene Primer sequences

CSF1
Forward Primer 5'-GCTGCCAGGCTTTCTTCGTGG-3'
Reverse Primer 5'-CGGTGCAGTTCTCCACCTGTCT-3'

CSF2
Forward Primer 5'-TGGGATTCCATGGCCAAGTCC-3'
Reverse Primer 5'-AGGCTCGTGGGCTTCAGGGTT-3'

CCR2
Forward Primer 5'-TGGCTCAAGGCTGTCCACACT-3'
Reverse Primer 5'-AGGTCTTGCTGGAGTTGGCTG-3'

CXCL1
Forward Primer 5'-GGCATAGCAGTACGAGTCTTG-3'
Reverse Primer 5'-TGGACATTTTGCTGGCTTG-3'

CXCL3
Forward Primer 5'-TTCACCTCAAGAACATCCAAAGTG-3'
Reverse Primer 5'-TTCTTCCCATTCTTGAGTGTGGC-3'

IL1B
Forward Primer 5'-GCACGATGCACCTGTACGAT-3'
Reverse Primer 5'-CACCAAGCTTTTTTGCTGTGAGT-3'

Fig. 2. hBM-MSCs doubling time in response to IL-1β run on real-
time cell analysis dual purpose (RTCA-DP) system.

Fig. 3. Cell proliferation of hBM-MSCs in presence of different con-
centrations of IL1B.

Table 2. The forward and backward primer sequences used during the RT-qPCR.
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IL-1β resulted in a substantial reduction in migration com-
pared to the control group (Figure 4).

The expression of CSF1 and CCR2 genes increased in 
parallel with higher concentrations of IL-1β compared to 
the control group. Conversely, CSF2 gene expression ex-
hibited a significant reduction at the lower IL-1β concen-
tration of 10 ng/ml when compared to the control. How-
ever, its expression increased when the concentration was 
raised to 50 ng/ml, surpassing the control group level. At 
the 100 ng/ml IL-1β concentration, CSF2 expression again 
declined, falling below the control group level (Figure 5).

 Gene expression levels of CXCL3 and IL-1β showed a 
rising trend alongside the increasing concentrations of IL-
1β when compared to the control group. Notably, CXCL1 
gene expression significantly decreased at a lower concen-
tration of IL-1β (10 ng/ml) relative to the control group. 
However, this expression escalated when the concentra-
tion was adjusted to 50 ng/ml and exceeded control levels 
upon reaching 100 ng/ml of IL-1β (Figure 6).

4. Discussion
Mesenchymal stem cells (MSCs) have been demon-

strated to be an effective therapeutic approach for manag-
ing inflammatory diseases with a variable influence [13-
15]. Stem cells can receive and respond to environmental 
changes and actively react to them [16]. In addition, MSCs 
can secrete chemokines, cytokines, and growth factors, 
promoting their anti-inflammatory effects in a paracrine 
manner. These factors can also enhance the proliferation 
and the immunomodulatory effects of the injured tissues. 
Therefore, many preconditioning approaches have been 
investigated to enhance their poor migration [9, 17, 18]. 

The current study sought to elucidate the genetic re-
sponses of MSCs to inflammatory environments and inves-
tigate the effects of preconditioning MSCs on their func-
tional activities (adhesion, proliferation, and migration). 
The study evaluated the impact of varying concentrations 
of IL-1β on MSCs functions in vitro. It revealed that this 
treatment had no significant effect on MSCs adhesion but 
significantly decreased their proliferation at the high con-
centration of 100 ng/ml IL-1β. However, it was reported 
that the adhesion of MSCs to human umbilical vein endo-
thelial cells was enhanced with the IL-1β through LFA-1/
ICAM-1 interaction [19]. Furthermore, in another study, 
the two low doses of IL-1β did not affect proliferation and 
induced migration, adhesion, and leucocyte recruitment 
through an NF-κβ-mediated pathway [20]. 

Also, in this study, the pro-inflammatory cytokine IL-
1β was found to maintain MSCs adhesion without causing 
disruption and to enhance proliferation at concentrations 
up to 50 ng/ml. Yet, cell growth and proliferation experi-
enced a notable decline with 100 ng/ml IL-1β. This obser-
vation aligns with earlier research where IL-1β was ob-
served to limit the proliferation of umbilical cord-derived 
MSCs. This warrants a re-evaluation of IL-1β's role in the 
proliferation and adhesion processes of MSCs. 

The study also revealed that at 10 ng/ml, IL-1β sig-
nificantly increased migration, with 50 ng/ml also hav-
ing beneficial effects. However, at 100 ng/ml, there was 
a substantial decrease in migration. Complementing these 
findings, Guo et al. identified that IL-1β facilitates MSC 
transmigration across HUVEC cells through engagement 
with the CXCR3 and its ligand, CXCL9. Additionally, IL-
1β is known to enhance the migration capability of MSCs 

Fig. 4. Impact of different IL-1β concentrations on hBM-MSCs cel-
lular migration over a 60-hour-period. The cell index, a quantitative 
measure of cell migration, is plotted against time. The control groups 
denoted as CNT-1% and CNT-10%, reflect baseline migration activity 
in the presence of 1% and 10% fetal bovine serum (FBS), respective-
ly. Comparative migration patterns are observed in response to IL-1β 
at concentrations of 1ng/ml, 10ng/ml, and 100ng/ml, both in the 1% 
and 10% FBS environments. Notably, the CNT-10% group maintains 
higher cell index values indicative of greater migration, serving as a 
positive control. In contrast, the CNT-1% serves as a negative control 
with markedly lower migration. This data highlights the dose-depen-
dent influence of IL-1β on hBM-MSCs migratory behaviour, provid-
ing insights into the cellular mechanisms modulated by this cytokine.

Fig. 5. Chemokines responsive gene expression after 24hrs induction 
of hBM-MSCs with different concentrations of IL-1β, a: colony-stim-
ulating factor 1 (CSF2), b: colony-stimulating factor 1 (CSF1), and c: 
chemokine receptor type 2 (CCR2).

Fig. 6. cytokines responsive gene expression after 24hrs induction of 
hBM-MSCs with different concentration of IL-1β, (a) C-X-C chemo-
kine receptor type 3 (CXCL3), (b) C-X-C chemokine receptor type 1 
(CXCL1), and (c) interleukin 1 beta (IL-1β).
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in a controlled environment. Furthermore, MSCs that were 
primed with IL-1β displayed an improved migration ca-
pacity to inflammatory sites within the gastrointestinal 
tract, which was evidenced by an increase in CXCR4 gene 
expression in response to dextran sulfate sodium-triggered 
colitis in mice, underlining the beneficial implications of 
the inflammatory milieu on MSC migration and localiza-
tion [21].

MSCs exhibit a high degree of responsiveness to 
their environmental conditions. The process of priming 
or preconditioning MSCs, which involves exposure to 
hormones, chemokines, cytokines, hypoxic conditions, 
growth factors, biomaterials, and pharmaceutical agents, 
has been extensively studied with favorable outcomes. IL-
1β preconditioning has been specifically noted to boost 
the immunomodulatory functions and overall efficiency 
of MSCs. It is also important to note that while the direct 
application of IL-1β on human umbilical cord-MSCs (HU-
VEC) did not affect their viability, the suppression of the 
IL-1R1 receptor through siRNA had a detrimental effect 
on MSC viability, irrespective of IL-1β's presence. This 
suggests that while IL-1β's signaling pathway is crucial 
for sustaining MSCs viability, it does not alter their funda-
mental structure or characteristics [21-23].

Colony-stimulating factor-1 (CSF1), or macrophage 
colony-stimulating factor, is an essential secreted cytokine 
that plays a pivotal role in advancing the release of pro-
inflammatory chemokines and facilitating the differentia-
tion of hematopoietic cells into macrophages. It serves as 
an essential agent for growth and differentiation within 
the macrophage family of cells. CSF1 is also recognized 
for its therapeutic potential, given its role in tissue regen-
eration across various types of tissue injuries [24, 25]. In 
this study, after inducing MSCs with IL-1β cytokine for a 
duration of 24 hours, an increase in CSF1 mRNA expres-
sion was observed that varied according to the dose ad-
ministered. This aligns with the discovery of Sonomoto et 
al., in which they noted an IL-1β-induced boost in the dif-
ferentiation of MSCs into osteoblasts. Furthermore, IL-1β 
was found to elevate CSF1 expression while reducing the 
release of inflammatory substances from MSCs [26, 27].

Granulocyte-macrophage colony-stimulating factor 
(GM-CSF or CSF2) is called both a pro-inflammatory cy-
tokine and a hematopoietic growth factor. It governs the 
creation, differentiation, and functioning of granulocytes 
and macrophages. The protein functions extracellularly as 
a homodimer. The CSF2 gene is instrumental in foster-
ing tissue inflammation and elevating cytokine levels. It 
also facilitates the shift from pro-inflammatory M1 mac-
rophages to the M2 phenotype, mitigating apoptosis and 
emission with reactive oxygen species typically produced 
by M1 macrophages [28]. Previous reports have indicated 
that IL-1β secretion from dendritic cells is significantly 
reliant on CSF2 [29, 30]. Moreover, it has been demon-
strated that CSF2 is actively secreted by MSCs following 
various cellular traumas, which correlates with enhanced 
migration and differentiation abilities [31]. In the present 
investigation, MSCs preconditioned with IL-1β showed 
a dose-responsive augmentation in CSF2 mRNA expres-
sion, indicating a potentially beneficial effect on the func-
tional capabilities of MSCs.

The C-C chemokine receptor type 2 (CCR2) functions 
as a G protein-coupled receptor specific to CCL2. These 
kinds of receptors are primarily found on monocytes/mac-

rophages and play a pivotal role in guiding monocytes to 
sites of inflammation, thereby facilitating pro-inflamma-
tory activities. In this study, MSCs pretreated with IL-1β 
exhibited an upregulation in CCR2 mRNA expression. 
CCR2-mediated signaling is essential for the release of 
monocytes from the bone marrow into circulation [32]. 
The observed elevation of CCR2 mRNA expression upon 
IL-1β treatment is suggestive of initiation of an inflam-
matory response, which typically involves the migration 
of monocytes to the affected region and the consequent 
release of growth factors. It was reported that CNS endo-
thelial cells produce CSF2 in response to activation by IL-
1β, which in turn transforms monocytes into antigen-pre-
senting cells. Moreover, deficiencies in CCR2 and some 
of its ligands in animal models alter susceptibility to many 
experimental infections [33].

Chemokine C-X-C motif ligand-1 (CXCL1) acts as a 
potent chemoattractant for various immune cells, particu-
larly directing the orchestrated migration and accumula-
tion of neutrophils, as well as monocytes/macrophages, to 
specific sites requiring immune response or inflammation 
[34]. The present study assessed the gene expression of 
CXCL1 in MSCs following IL-1β treatment. Low doses 
of IL-1β reduced CXCL1 mRNA expression. However, 
higher doses returned CXCL1 mRNA expression to nor-
mal. The research noted that in human mesangial cells, ini-
tiating treatment with IL-1β before restimulation led to a 
decrease in the production of CXCL1 and CXCL2, which 
was regulated by the ubiquitin-editing enzyme known as 
A20 [35]. Additionally, starting treatments with IL-1α/β 
on various cell types spurred the creation of certain CXC 
chemokines and IL-8, along with other pro-inflammatory 
cytokines, including IL-1β itself [36]. The study at hand 
also observed that the intensities of IL-1β messenger RNA 
went up in a gradual manner when cells were induced with 
IL-1β beforehand. It suggests that to achieve a substan-
tial increase in the production of these chemokines and 
cytokines within MSCs, higher doses of IL-1β might be 
necessary.

5. Conclusion
The study verifies the benefits of stimulating MSCs by 

the cytokine IL-1β. By exposing MSCs to IL-1β prior to 
their application, there was an upregulation in key che-
mokines and cytokines. This could potentially improve 
the MSCs' ability to differentiate and migrate to areas of 
injury, as well as boost their functional role within an in-
flamed microenvironment, thereby amplifying their heal-
ing properties.
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