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1.  Introduction
Alzheimer's disease (AD), a complex neurodegenera-

tive condition, primarily affects the elderly and is the lead-
ing cause of dementia, characterized by cognitive decline 
and memory loss in individuals aged 65 years and older. 
First identified by Dr. Alois Alzheimer in 1906, AD has 
become a significant public health challenge affecting 
millions of individuals and their families. Its prevalence 
is projected to increase from 5.8 million to 13.8 million 
by 2050, emphasizing the need for comprehensive un-
derstanding and effective interventions [1, 2]. The exact 
causes of AD remain unclear, and a combination of genetic 

and environmental factors is believed to contribute to its 
onset. Genetic factors such as the presence of the APOE 
ε4 allele and other risk factors, such as cardiovascular con-
ditions, diabetes, and head injuries, have been associated 
with increased susceptibility to AD [3-10].

The accumulation of beta-amyloid plaques, synap-
tic degeneration, and neurofibrillary tangles in the brain 
characterizes the pathophysiology of AD. Beta-amyloid 
plaques are extracellular deposits of misfolded proteins 
that disrupt normal neuronal function. In contrast, neu-
rofibrillary tangles consist of twisted tau proteins within 
neurons, causing structural damage and ultimately leading 
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to cell death. These changes primarily affect brain regions 
associated with memory and cognitive function. Contem-
porary research models focus on regulating the accumula-
tion rate of beta-amyloid to impede the progression of Al-
zheimer's disease (AD). Advanced biomarkers play a cru-
cial role in elucidating the underlying mechanisms of the 
disease, offering valuable insights into potential therapeu-
tic strategies [11-17]. Amyloid precursor protein (APP), a 
type 1 transmembrane glycoprotein with various isoforms, 
is cleaved by BACE1, the primary beta-secretase in the 
brain, resulting in the formation of amyloid-beta peptides 
that contribute to AD progression [18-22].

BACE1 is a critical therapeutic target owing to its role 
in Aβ production. Inhibitors designed to target the catalytic 
site of BACE1 aim to slow disease progression. BACE2, a 
closely related enzyme, participates in physiological func-
tions such as myelination and synaptic transmission; how-
ever, the primary focus in the context of AD remains on 
BACE1 [23-27]. Despite the lack of a cure for AD, vari-
ous treatment strategies have been developed to alleviate 
symptoms and decelerate disease progression. These in-
clude medications, such as cholinesterase inhibitors and 
memantine, which target neurotransmitter imbalances to 
enhance cognitive function, and non-pharmacological 
interventions, such as cognitive stimulation and physical 
exercise, which constitute integral components of disease 
management [28, 29].

Ongoing research has explored novel avenues for un-
derstanding AD, including genetics, molecular pathways, 
and potential therapeutic targets. Early diagnosis remains 
challenging, and researchers are investigating biomarkers 
and advanced imaging techniques for accurate and early 
detection [30-32]. Developing effective preventive strate-
gies and treatments requires technological advancements 
and increased awareness. Our research utilizes Pfizer's 
Lipinski rule and virtual screening techniques to identify 
potential ligands for BACE1 within the MCULE digital 
library. We then employed AutoDock Vina (ADV) for 
docking on MCULE's platform, followed by a thorough 
evaluation of toxicophores using the Egan-Egg model for 
human intestinal absorption (HIA) and blood-brain barrier 
(BBB) permeability. The topological polar surface area 
(TPSA) and water-octanol partition coefficient (WLOGP) 
were used as parameters in these tests. Compounds that 
passed these evaluations were subjected to comprehensive 
screening for various pharmacokinetic parameters, and the 
stability of the top ligands was evaluated through molec-
ular dynamics (MD) simulations. Finally, a comparative 
analysis was conducted between the leading molecules 
and a reference drug to identify potential drug candidates 
for Alzheimer's disease (AD) via inhibition of BACE1.

2. Materials and Methods
2.1 Retrieval and optimization of BACE1 protein 
structure

The three-dimensional crystal structure of BACE1 
(2B8L) was obtained from the RCSB PDB at a resolution 
of 1.70 Å (33, 34). To create a 3D input file suitable for 
docking tools, the protein part of the crystal structure was 
selected and unwanted heteroatoms, ions, and molecular 
entities were excluded. The CHARMm force field was 
then applied to optimize and minimize the structural con-
figuration [35].

2.2 High-throughput Structure-Based Virtual Screen-
ing (SBVS) 

An online drug discovery platform, Mcule, was uti-
lized to explore smaller essential molecules by implement-
ing a high-throughput Structure-Based Virtual Screening 
(SBVS) process. The Mcule library, which comprises 
hundreds of millions of ligands, is the source of these 
molecules. The SBVS process involves the establishment 
of fundamental property filters, such as adherence to the 
Lipinski rule of five (ROF: MW ≤ 500 Da; hydrogen bond 
donor HBD ≤ 5; hydrogen bond acceptor ≤ 10; LogP ≤ 5). 
Other criteria considered during the workflow were chiral 
center ≤ 3, rotatable bonds ≤ 4, ≤ 10 N and O atoms, ≥ 10 
heavy atoms, and rings ≤ 3. The SBVS search parameters 
were set with a sample size of 100,000, a diversity selec-
tion of 1000, and a similarity threshold 0.85. The search 
was performed using the Open Babel linear fingerprint 
search algorithm [36–38].

2.3 Retrieval and optimization of BACE1 inhibitor 
structure

We obtained Beta-secretase Inhibitor IV, 5HA (CID: 
5287532), from the PubChem database in standard data 
format. To facilitate further analysis, we converted the 
SDF-2D file of the inhibitor to a PDB-3D file format us-
ing the BIOVIA Discovery Studio. The optimization pro-
cedure for the inhibitor followed the same steps as those 
reported for BACE1 (25, 39, 40).

2.4 Computational docking utilizing AutoDock Vina 
for investigating molecular interactions

To analyze the molecular interactions between BACE1 
and the compounds identified through Structure-Based 
Virtual Screening (SBVS), AutoDock Vina was used. The 
apoprotein segment of BACE1 was imported and desig-
nated as the reference target [41-44]. A grid size of 40 Å 
was allocated along the x-, y-, and z-axes. The grid box 
covering the protein-ligand binding site was defined with 
variable grid points along the x (29.026 Å), y (45.3075 
Å), and z (15.4725 Å) axes. The minimum free energy of 
binding (ΔG) was selected as the discriminating param-
eter to identify the optimal binding affinities and positions 
for each ligand molecule docked within the active site of 
BACE1.

2.5 Exclusion of toxicophores
Following the molecular docking process, the top 100 

molecules were subjected to toxicity profiling using the 
Mcule Toxicity Checker. This process involves the utiliza-
tion of robust SMARTS (SMILES Arbitrary Target Spec-
ification) toxic matching rules to assess the presence of 
substructures, scaffolds, or moieties, commonly referred 
to as toxicophores, within chemical compounds.

2.6 Exploration of Absorption, Distribution, Metabo-
lism, and Excretion (ADME) properties

Assessment of the absorptive, distributive, metabolic, 
and excretory properties of compounds is of utmost im-
portance in understanding their effectiveness as drugs 
and their overall impact. This process involves classify-
ing compounds based on their pharmacokinetic properties, 
and it is imperative to meet the criteria outlined by the 
ADME to achieve successful outcomes in laboratory ex-
periments. The ADME characteristics of the compounds 
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didates. The outcomes are summarized in Table 1.

3.3 Molecular docking (MD)
The binding affinities of all ligands and reference in-

hibitors (5HA) were evaluated by docking into the BACE1 
binding pocket using the MCULE ADV tool. The calcu-
lated binding free energy (ΔG) for ligand hits ranged from 
-8.83 kcal/mol to -7.84 kcal/mol (Table 2).

A comparative analysis was conducted between 
docked complexes of the predicted ligands and BACE1, 
in contrast to the reference drug 5HA. The ΔG value of 
5HA in its interaction with the BACE1 binding pocket was 
-7.82 kcal/mol, engaging with 16 residues through various 
binding interactions such as Van der Waals, conventional 
hydrogen bonds, carbon-hydrogen bond, Pi-Donor Hydro-
gen bond, Pi-Pi T-shaped, Amide-Pi Stacked, and Pi-Alkyl 
interactions (Figure 2A). Only five ligand hits from the 
toxicity checker demonstrated ΔG values lower than 5HA, 
as outlined in Table 2.

were evaluated using the SwissADME web tool, consider-
ing various parameters such as drug-likeness, medicinal 
chemistry attributes, lipophilicity, and physiochemical 
properties [45-47].

2.7 Stability evaluation through Molecular Dynamics 
(MD) simulations

We performed computational simulations using the 
GROMACS 5.1.2 software to evaluate the stability of 
the two most promising protein-ligand docked complexes 
and the positive control. We utilized the GROMACS grep 
module to isolate the ligands from their complexes and the 
CHARMm General Force Field (CGenFF) server to assign 
topology and forcefield parameters. We created a topology 
for the PfBLM Helicase-ATP Binding Domain using pdb-
2gmx segments in the GROMACS package. The structural 
coordinates of the top three hits were obtained using the 
CGenFF tool. Each complex was enclosed in a dodeca-
hedron box filled with water molecules, ensuring a 10 Å 
margin around the complex. The charges in the complexes 
were neutralized and sodium and chloride ions were added 
to maintain a biological concentration of 0.15 M. We then 
performed an energy minimization process consisting of 
250,000 steps, using a robust steepest descent algorithm. 
The temperature of the system was gradually increased 
from 0 to 300 K during a ten ns equilibration period at 
standard temperature and pressure (STP). After achieving 
equilibrium, a particle mesh was assigned using the Ewald 
scheme. We used various GROMACS modules to assess 
the stability of the hit molecules in terms of the root-mean-
square deviation (RMSD), root-mean-square fluctuation 
(RMSF), and radius of gyration (Rg).

3. Results and Discussion
3.1 Rational selection of lead ligands through struc-
ture-Based Virtual Screening

In Structure-Based Virtual Screening (SBVS) facili-
tated by the Mcule online drug discovery platform, an 
extensive screening process was executed on a dataset of 
2,208,042 ligand molecules. By employing rigorous crite-
ria, including adherence to Lipinski's Rule of Five (RO5), 
drug-likeness parameters, and considerations of N and O 
atoms, as detailed in the methodology section [37], a sub-
set of top-performing ligands emerged.

Following the initial screening, the top 100 ligands 
were further refined through toxicity profiling and assess-
ment of the binding free energy. This rigorous selection 
process identified two exceptional ligands with ΔG values 
below -7.82 kcal/mol. These lead ligands, with ΔG values 
of -8.83 kcal/mol and -8.24 kcal/mol, respectively, were 
prioritized for subsequent simulation studies. This strategy 
is crucial for the development of novel drug candidates. 
The serial steps adopted are summarized in Figure 1.

3.2 Evaluation of toxicity for drug candidates
Evaluating a drug's pharmacokinetic properties is para-

mount in biological processes and may significantly im-
pact subsequent stages, necessitating additional resources. 
In the initial stages of drug development, it is imperative 
to eliminate compounds that may be carcinogenic, mu-
tagenic, or possess problematic scaffolds or toxicophores. 
Using the Mcule toxicity risk assessment, 59 compounds 
were deemed safe and potentially promising as drug can-

Fig. 1. SBVS schematic illustration for BACE1 lead molecule selec-
tion.

Fig. 2. (A) 2D representation of BACE1 and control molecule (5HA) 
interactions during docking, showcasing various forces (B) 2D illus-
tration of BACE1 and MCULE-3872425295-0-7 interactions during 
docking, highlighting various forces.



67

BACE1 targeting: implications for Alzheimer's disease.                                                                                                                                         
                      

           Cell. Mol. Biol. 2024, 70(8): 64-75

S. No. Ligand hits Compliance with toxicity check
1. MCULE-2491610851-0-1 Passed
2. MCULE-9199128437-0-2 Passed
3. MCULE-3872425295-0-7 Passed
4. MCULE-6247779336-0-1 Failed
5. MCULE-7785913432-0-10 Failed
6. MCULE-8572723302-0-2 Passed
7. MCULE-4983453402-0-1 Passed
8. MCULE-3633236962-0-2 Failed
9. MCULE-2831657328-0-2 Passed
10. MCULE-9113665645-0-3 Failed
11. MCULE-6573497537-0-2 Passed
12. MCULE-4444541297-0-39 Failed
13. MCULE-7106282644-0-1 Failed
14. MCULE-7107671047-0-1 Failed
15. MCULE-8150897678-0-4 Failed
16. MCULE-6744001428-0-3 Failed
17. MCULE-4676044378-0-2 Passed
18. MCULE-2505328720-0-23 Passed
19. MCULE-4963828787-0-2 Passed
20. MCULE-3946806480-0-2 Passed
21. MCULE-3952545513-0-1 Failed
22. MCULE-8050325075-0-3 Passed
23. MCULE-5979124564-0-3 Passed
24. MCULE-2510260963-1-1 Failed
25. MCULE-9884105036-0-1 Failed
26. MCULE-3146454229-0-2 Passed
27. MCULE-8110440589-0-1 Passed
28. MCULE-9180049100-0-1 Failed
29. MCULE-4018664519-0-1 Failed
30. MCULE-3279207023-0-1 Passed
31. MCULE-9774830352-0-1 Failed
32. MCULE-8742796317-0-1 Failed
33. MCULE-6766771092-0-11 Failed
34. MCULE-7678621098-0-1 Passed
35. MCULE-1175659191-0-1 Passed
36. MCULE-3991253605-0-1 Passed
37. MCULE-7026407753-0-3 Passed
38. MCULE-3212232017-0-4 Failed
39. MCULE-2848222492-0-1 Passed
40. MCULE-9545019691-0-74 Passed
41. MCULE-8894698072-0-2 Failed
42. MCULE-1949229841-0-2 Passed
43. MCULE-2364976076-0-11 Passed
44. MCULE-2337612886-0-3 Failed
45. MCULE-9983139545-0-2 Failed
46. MCULE-2346913695-0-1 Passed
47. MCULE-7595378623-0-1 Passed
48. MCULE-1268978276-0-63 Passed
49. MCULE-5436286666-0-1 Passed
50. MCULE-9056345284-0-1 Failed
51. MCULE-6613229794-0-1 Passed
52. MCULE-1792852362-0-4 Failed

Table 1. A comprehensive overview of the top 100 ligands, including mcule id and toxicity profiles.
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Examining hydrogen bond interactions, only two li-
gand hits, specifically MCULE-3872425295-0-7 and 
MCULE-8572723302-0-2, exhibited three and two hydro-
gen bonds, respectively, in contrast to the reference mol-
ecule, 5HA, which showed the presence of four conven-
tional hydrogen bonds.

Throughout the binding interactions with the target 
protein BACE1, the reference drug, 5HA, displayed the 
presence of four conventional hydrogen bonds. The pre-
dicted ligands, particularly MCULE-3872425295-0-7 and 
MCULE-8572723302-0-2, exhibited lower ΔG values, 
indicating robust binding affinities with the target protein 

53. MCULE-5543253227-0-1 Failed
54. MCULE-6756956850-0-1 Passed
55. MCULE-2959741432-0-3 Failed
56. MCULE-1630554512-0-1 Passed
57. MCULE-5429550474-0-1 Failed
58. MCULE-9110513884-0-1 Passed
59. MCULE-9920865629-0-8 Failed
60. MCULE-1136944181-0-2 Failed
61. MCULE-8757392030-0-1 Passed
62. MCULE-7885124405-0-6 Failed
63. MCULE-4333400439-0-3 Failed
64. MCULE-5795139091-0-1 Passed
65. MCULE-8922375714-0-2 Passed
66. MCULE-6120922582-0-1 Passed
67. MCULE-4694042030-0-4 Failed
68. MCULE-7622376387-0-1 Passed
69. MCULE-7882770900-0-1 Passed
70. MCULE-8302247456-0-2 Passed
71. MCULE-4470372384-0-1 Failed
72. MCULE-3633342528-0-4 Passed
73. MCULE-2771929429-0-3 Passed
74. MCULE-4109133773-0-1 Passed
75. MCULE-6625674793-0-1 Passed
76. MCULE-6720977409-0-1 Passed
77. MCULE-7929482340-0-1 Passed
78. MCULE-1244449277-0-2 Passed
79. MCULE-7551298769-0-1 Passed
80. MCULE-7611227259-0-8 Failed
81. MCULE-7563265724-0-1 Failed
82. MCULE-4920383552-0-2 Passed
83. MCULE-2230747440-0-20 Passed
84. MCULE-7016970852-0-41 Passed
85. MCULE-4134414820-0-3 Failed
86. MCULE-6258460674-0-1 Passed
87. MCULE-4031079253-0-1 Passed
88. MCULE-5667035067-0-1 Passed
89. MCULE-9508121818-0-6 Failed
90. MCULE-6357350491-0-2 Passed
91. MCULE-7695843923-0-2 Passed
92. MCULE-7963939105-0-2 Passed
93. MCULE-4834316893-0-2 Failed
94. MCULE-5446518588-0-7 Failed
95. MCULE-8700050471-0-4 Failed
96. MCULE-6376548215-0-1 Failed
97. MCULE-4281952551-0-2 Passed
98. MCULE-5887067313-0-1 Passed
99. MCULE-2357737612-0-5 Failed
100. MCULE-9000936330-0-2 Passed
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residues.
Further analysis and selection of compounds were 

based on the presence of maximum hydrogen bonds and 
strong binding affinity compared with the control mol-
ecules. MCULE-3872425295-0-7, with a ΔG value of 
-8.83 kcal/mol, interacted with 17 residues through five 
distinct binding interactions, including Van der Waals, 
hydrogen bonds, carbon-hydrogen bonds, Amide-pi 
Stacked, and Pi-Alkyl interactions (Figure 2B). Similarly, 
MCULE-8572723302-0-2, displaying a ΔG value of -8.24 
kcal/mol, interacted with 19 residues through six differ-
ent binding interactions, namely Van der Waals, hydro-
gen bonds, Pi-Anion, Pi-Donor hydrogen bond, Pi-Pi T-
shaped, and Pi-Alkyl interactions (Figure 3).

3.4 Evaluation of ligand potential for human intestinal 
absorption and blood-brain barrier permeation using 
Egan-Egg filtration

The Egan-Egg model, an essential component of 
ADME descriptors, has been employed to predict the vi-
ability of ligands for both passive human intestinal absorp-
tion (HIA) and permeation across the blood-brain barrier 
(BBB). The model delineates two distinct regions, yellow 
and white, which represent physicochemical spaces asso-
ciated with significant BBB permeation and gastrointesti-
nal (GI) absorption, respectively [50].

In the context of BBB penetration and HIA perme-
ation, the Egan-Egg model categorizes ligands into yel-
low and white regions, designating their predictive posi-
tions for substantial BBB permeation and effective HIA 
permeation, respectively. Several ligand hits, including 
MCULE-3872425295-0-7, MCULE-8572723302-0-2, 
MCULE-2491610851-0-1, MCULE-4983453402-0-1, 
and MCULE-9199128437-0-2 displayed plausible HIA 
permeation. Notably, the first four ligand hits also demon-
strated BBB permeation, which is a crucial characteristic 
in the design of neurodegenerative drug candidates. How-
ever, MCULE-9199128437-0-2 does not exhibit BBB per-
meability [51,52].

In addition, the reference drug, 5HA, displayed low 
HIA permeation but did not exhibit BBB permeation. 
Figure 4 illustrates the BOILED-Egg predictions for both 
ligands and reference molecules, where the blue and red 
dots represent the P-gp-positive and P-gp-negative mole-
cules, respectively. This distinction highlights that ligands 
that are substrates of P-glycoprotein are expelled during 
BBB penetration, whereas non-substrate ligands have the 
potential to traverse the brain membrane.

3.5 Physicochemical characteristics analysis
The physicochemical properties of molecules, includ-

ing Molecular Weight (MW), FCsp3 hybridization, Ro-
tatable Bonds (RB), Hydrogen Bond Acceptor (HBA), 
Hydrogen Bond Donor (HBD), and Total Polar Surface 
Area (TPSA), play a critical role in the rapid prediction of 
the ADME attributes of investigational ligand molecules 
[53, 54]. The success of a compound is determined by its 
adherence to acceptable ranges of these physicochemical 
parameters.

SwissADME employs OpenBabel v.2.3.0 to calculate 
the ADME features and utilizes a fragment technique to 
estimate the Polar Surface Area (PSA). The BACE1 inhib-

Table 2. Binding energies and molecular interactions of ligand hits and the known inhibitor 5HA.

S. No. Ligand hits Binding energy Types of molecular interactions

1. MCULE-8572723302-0-2 -8.24 Van der Waals (Vdw), hydrogen bonds (HB), Pi-Anion, Pi-Donor 
hydrogen bond, Pi-Pi T-shaped, and Pi-Alkyl

2. MCULE-3872425295-0-7 -8.83 Vdw, HBs, carbon-hydrogen bonds (CHB), Amide-pi Stacked, and 
Pi-Alkyl

3. MCULE-9199128437-0-2 -8.19 Vdw, HBs, Pi-Anion, Alkyl and Pi-Alkyl
4. MCULE-2491610851-0-1 -7.90 Vdw, HBs, halogen (fluorine), Amide-Pi Stacked, and Pi-Alkyl
5. MCULE-4983453402-0-1 -7.84 Vdw, HBs, and Pi-Anion, Alkyl and Pi-Alkyl

6. 5HA (Control) -7.82 Vdw, HBs, CHB, Pi-Donor hydrogen bond, Pi-Pi T-shaped, Amide-
Pi Stacked, and Pi-Alkyl

Fig. 3. 2D Illustration depicting the engagement between BACE1 and 
MCULE-8572723302-0-2 showing various molecular forces.

Fig. 4. Assessment of blood-brain barrier permeability and gut ab-
sorption for ligands and control molecules using the Egan-egg model. 
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itor, 5HA, serves as a reference with a Molecular Weight 
of 270.24 and FCsp3 of 0. Information regarding the com-
pounds that successfully passed the toxicity assessment is 
shown in Table 3. These physicochemical insights contrib-
ute to the rapid assessment and prediction of ADME pro-
files of potential ligands.

3.6 Lipophilicity analysis of ligands and reference mo-
lecule 5HA

The evaluation of lipophilicity is of utmost importance 
in understanding the ability of a drug to dissolve in lipids 
or fats, as it offers insights into the potential interactions 
and absorption of the drug within lipid-rich environments, 
which subsequently affects its pharmacokinetic behavior 
in the body. The lipophilicity of a drug is typically mea-
sured using the partition coefficient (P), which is the ra-
tio of the concentration of the drug in a nonpolar solvent 
(octanol) to its concentration in a polar solvent (water). 
A higher partition coefficient or lipophilicity indicates a 
greater likelihood of the drug being distributed and retai-
ned by lipid-rich tissues. Achieving optimal lipophilicity 
is crucial for the effectiveness of a drug, and balancing it 
is necessary to attain the appropriate pharmacokinetic pro-
perties for absorption, distribution, metabolism, and ex-
cretion within the body. During drug development, various 
computational and experimental methods have been used 
to assess and optimize lipophilicity [55, 56]. The analyzed 
compounds displayed a range of lipophilic characteristics, 
with iLOGP values ranging from 1.23 to 3.58, XLOGP 
values ranging from 1.71 to 4.29, WLOGP values ranging 
from 2.55 to 4.29, and MLOGP values ranging from 0.89 
to 3.38 (Table 4). These values provide valuable infor-

mation for understanding the lipophilic characteristics of 
ligands and their potential impact on pharmacokinetics.

3.7 Solubility analysis of ligands and reference mole-
cule 5HA

The solubility of a drug is essential to understand its 
absorption, distribution, and effectiveness within the body. 
Drugs with poor solubility present difficulties in formula-
tion and delivery. Solubility is determined by the maxi-
mum amount of substance that can dissolve in a solvent 
under specific conditions, such as temperature and pres-
sure. SwissADME uses three methods for solubility stud-
ies: ESOL, Ali, and SILICOS-IT filters [57-61].

      Based on the solubility analysis, the known inhibi-
tor was classified as poorly to moderately soluble, falling 
within the optimum range. Conversely, some of the ligands 
exhibited moderate to good solubility. This information is 
crucial for understanding the potential challenges in drug 
formulation and delivery and for identifying ligands with 
desirable solubility profiles for further pharmaceutical de-
velopment (Table 5).

3.8  Pharmacokinetic evaluation: Assessing safety and 
effectiveness

The evaluation of pharmacokinetics is of utmost im-
portance in determining the safety and efficacy of a drug 
candidate. This process involves investigating the interac-
tion of the compound with permeability glycoprotein (P-
gp) and CYP enzymes and assessing whether it acts as a 
substrate or non-substrate. The skin permeability coeffi-
cient (Kp) is calculated using a regression model adapted 
from Potts and Guy [62, 63].

Ligand MW (g mol-1) Fcsp3 RB HBA HBD MR TPSA (Å2)
5HA (known inhibitor) 578.72 0.35 15 6 4 160.08 136.22
MCULE-2491610851-0-1 314.31 0.62 3 7 1 78.78 58.35
MCULE-9199128437-0-2 310.39 0.31 3 4 2 77.79 115.65
MCULE-3872425295-0-7 289.16 0.07 2 2 0 78.8 25.78
MCULE-8572723302-0-2 284.74 0.07 2 2 2 80.25 57.46
MCULE-4983453402-0-1 240.68 0 1 2 1 59.83 60.77

Table 3. Physiochemical properties of ligands and known inhibitor 5HA.

Ligand iLOGP XLOGP3 WLOGP MLOGP
5HA (known inhibitor) 3.58 3.6 3.72 1.89
MCULE-2491610851-0-1 2.68 2.81 2.56 2.5
MCULE-9199128437-0-2 1.23 1.71 2.55 0.89
MCULE-3872425295-0-7 2.85 4.29 4.29 3.38
MCULE-8572723302-0-2 2.6 2.87 3.22 2.42
MCULE-4983453402-0-1 2.19 2.59 4.02 2.61

Table 4. Lipophilicity of ligands and known inhibitor 5HA.

Ligand Log S (ESOL) Log S (Ali) Log S (SILICOS-IT)
5HA (known inhibitor) -5.03 -6.15 -8.61
MCULE-2491610851-0-1 -3.66 -3.69 -3.3
MCULE-9199128437-0-2 -3.05 -3.75 -4.56
MCULE-3872425295-0-7 -4.83 -4.54 -7.12
MCULE-8572723302-0-2 -3.91 -3.74 -6.12
MCULE-4983453402-0-1 -3.49 -3.52 -5.18

Table 5. Comparative solubility assessment of ligands and reference inhibitor 5HA.
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A more negative Kp value indicates lower skin per-
meability for the molecule, indicating that the compound 
has a reduced permeation through the skin. Therefore, Kp 
negativity was associated with reduced skin permeability. 
This parameter is essential for evaluating the suitability of 
a drug candidate, particularly its ability to penetrate the 
skin barrier. The computed pharmacokinetic features of 
the ligand and control molecules are listed in Table 6.

3.9 Drug likeness assessment
Various sets of guidelines or filters, including Lipins-

ki's Rule of Five, Ghose's Rule, Veber's Rule, Egan's Rule, 
and Muegge's Rule, are used in drug discovery and de-
velopment to evaluate the drug-likeness of chemical com-
pounds [64]. These rules are valuable tools for predicting 
the potential success of a compound as an orally active 
drug. Although there are slight variations in the considered 
physicochemical properties among the rules, such as mo-
lecular weight, LogP value, and the number of hydrogen 
bond donors and acceptors, they collectively contribute to 
the assessment of a compound's suitability.

Lipinski's Rule of Five (RO5) evaluates a compound 
based on four key properties: molecular weight, lipophi-
licity, hydrogen bond donors, and hydrogen bond accep-
tors [65, 66]. Veber's rule focuses on the oral bioavailabil-
ity of a compound, specifically considering the number 
of rotatable bonds. Egan's rule assesses oral availability 
based on molecular weight, LogP, and hydrogen bond ac-
ceptors. Muegge's rule incorporates a range of properties, 
including molecular weight, lipophilicity, and the number 
of hydrogen bond donors and acceptors [67, 68] (Table 7). 
These rules collectively aid in gauging the drug-likeness 

of compounds and offer valuable insights into drug devel-
opment.

3.10 Analysis of medicinal chemistry attributes
In the field of drug discovery, the term Pan-Assay In-

terference Compounds (PAINS) is used to describe chemi-
cal compounds that can interfere with the results of vari-
ous biological assays, potentially leading to false-positive 
results in high-throughput screenings [69, 70]. These 
compounds often referred to as hits, exhibit nonspecific 
activity and can create unwanted interactions with assay 
components. PAINS compounds lack specificity for a par-
ticular target and demonstrate activity in a wide range of 
biological assays.

To address this issue, structural filters, called Brenk 
alerts or Brenk filters, have been developed. These filters 
were designed to identify problematic compounds in vir-
tual or high-throughput screening campaigns for drug dis-
covery. Similar to other medicinal chemistry filters, such 
as PAINS, Brenk alerts target-specific structural motifs 
identified through the analysis of compounds with unde-
sirable assay interference properties.

During drug discovery, lead compounds, which are 
early-stage drug candidates with promising biological ac-
tivity, are assessed for lead-likeness. This evaluation was 
based on criteria such as molecular weight, lipophilicity, 
hydrogen bond donors and acceptors, number of rotatable 
bonds, and topological polar surface area. It is important to 
note that these lead-likeness criteria are guidelines rather 
than strict rules and may vary based on the specific context 
and target class [68] (Table 8). These attributes contribute 
to the careful evaluation of compounds during drug dis-

                Ligands CYP1A2 
inhibitor

CYP2C19 
inhibitor

CYP2C9 
inhibitor

CYP2D6 
inhibitor

CYP3A4 
inhibitor

5HA (known inhibitor-BACE-1) No Yes Yes Yes Yes
MCULE-2491610851-0-1 No No No No No
MCULE-9199128437-0-2 No No No No No
MCULE-3872425295-0-7 Yes Yes Yes No No
MCULE-8572723302-0-2 Yes Yes No No No
MCULE-4983453402-0-1 Yes No No No No

Table 6. Comparative pharmacokinetic parameters of ligands and reference inhibitor 5HA.

Ligand Lipinski RO5 Ghose Veber Egan Muegge 
violations

5HA (known inhibitor) 1 3 1 1 0
MCULE-2491610851-0-1 0 0 0 0 0
MCULE-9199128437-0-2 0 0 0 0 0
MCULE-3872425295-0-7 0 0 0 0 0
MCULE-8572723302-0-2 0 0 0 0 0
MCULE-4983453402-0-1 0 0 0 0 0

Table 7. Drug likeness of ligands and known inhibitor 5HA.

Molecules PAINS alerts Brenk alerts Lead-likeness violations Synthetic Accessibility
5HA (known inhibitor) 0 0 3 4.79
MCULE-2491610851-0-1 0 0 0 3.72
MCULE-9199128437-0-2 0 0 0 3.43
MCULE-3872425295-0-7 0 1 1 2.85
MCULE-8572723302-0-2 0 0 0 2.81
MCULE-4983453402-0-1 0 1 1 2.18

Table 8. Comparative analysis of medicinal chemistry attributes in ligands & reference Iinhibitor 5HA.
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covery and development.

3.11 Molecular dynamics simulation analysis
To evaluate the stability of the docked complexes, a 

Molecular Dynamics Simulation (MDS) was employed, 
and a graphical representation was generated illustrating 
the Root Mean Square Deviation (RMSD), Root Mean 
Square Fluctuation (RMSF), and Radius of Gyration. This 
analysis provides important insights into docked com-
plexes' dynamic behavior and stability throughout the 
simulation.

3.12 RMSD, RMSF and Rg analysis
The Root Mean Square Deviation (RMSD) is a metric 

used to measure the square of the quadratic mean of the 
disparities between the anticipated and actual values within 
a sample, and it is commonly utilized to assess the stabil-
ity of docked complexes. In this study, the RMSD values 
for the Cα atoms of BACE1-MCULE-8572723302-0-2, 
BACE1-MCULE-3872425295-0-7, and BACE1-5HA 
complexes were determined to be approximately 5 ns. The 
RMSD values for the BACE1-MCULE-8572723302-0-2 
and BACE1-MCULE-3872425295-0-7 complexes were 
1.32 nm and 1.36 nm, respectively. The RMSD value for 
the reference molecule BACE1-5HA was 1.46 nm.

The RMSD plot in Figure 5A illustrates the dy-
namic behavior and stability of the docked complexes 
over time. Notably, the complex formed by BACE1-
MCULE-3872425295-0-7 displayed superior stability 
compared to the complex formed by the reference mole-
cule. This analysis provides crucial insights into the struc-
tural fluctuations and overall stability of the docked com-
plexes during Molecular Dynamics simulations, offering 
valuable information for the evaluation of potential drug 
candidates.

RMSF is a useful tool for evaluating the flexibil-
ity of docked complexes and is often employed to quan-
tify variations by comparing initial and final fluctua-
tions. Average RMSF values for the docked complexes 
BACE1-MCULE-8572723302-0-2 (1.4 nm), BACE1-
MCULE-3872425295-0-7 (1.84 nm), and BACE1-5HA 
(control) (1.87 nm). This analysis provides valuable in-
sights into the structural fluctuations of docked complexes 
during molecular dynamics simulations (Figure 5B).

The decreasing trend of the radii of gyration 
(Rg) with increasing compactness of the docked 
complexes is noteworthy. The average Rg values 
for BACE1-MCULE-3872425295-0-7, BACE1-
MCULE-8572723302-0-2, and BACE1-MCULE-5HA 
(control) are 3.11 nm, 3.14 nm, and 3.27 nm, respectively 
(Figure 5C). This analysis provides crucial information 
about the structural characteristics and compactness of 
docked complexes during molecular dynamics simula-
tions, which can be useful in further investigations.

This study employed a comprehensive screening pro-
cess using Pfizer's Lipinski's Rule of Five criteria to identi-
fy potential drug candidates targeting Alzheimer’s Disease, 
specifically focusing on BACE1. From an initial pool of 
over two million candidates, 100 promising ligands have 
emerged. Further evaluation based on the binding free 
energy and hydrogen bond formation narrowed down the 
selection to five standout molecules. These results played 
a crucial role in refinement, leading to the identification 
of two lead ligands with binding affinities comparable to 

those of the control drug, 5HA. Docking simulations and 
toxicity assessments provided valuable insights into the in-
teractions between these ligands and the BACE1 binding 
pocket. The structural interactions, illustrated in Figures 4 
and 6, highlight the bonding modes and residues engaged 
by MCULE-3872425295-0-7 and MCULE 8572723302-
0-2, laying the groundwork for linking these interactions 
with potential drug candidates.

According to the BOILED-Egg filtration model, the 
control drug exhibited limited permeation through HIA or 
BBB barriers. In contrast, MCULE 8572723302-0-2 suc-
cessfully penetrated the BBB and HIA barriers, whereas 
MCULE-3872425295-0-7 -2 only penetrated the HIA 
barrier. Assessments of medicinal chemistry attributes 
indicated promising features without alerts or violations. 
However, the synthetic accessibility of these compounds 
was lower than that of the control. Additional stability as-

Fig. 5. (A) RMSD plot depicting structural stability during 
Molecular Dynamics Simulation for BACE1 complexes with 
MCULE-3872425295-0-7 (magenta), MCULE-8572723302-0-2 
(blue), and 5HA (control) (orange). (B) RMSF plot illustrating struc-
tural fluctuations for the same complexes. (C) Rg plot showing overall 
structural characteristics. Distinct colors represent different ligands, 
facilitating comparative dynamic analysis.
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sessments through Molecular Dynamics (MD) simulations 
provided crucial insights into the complexes formed by the 
top two ligand hits and the reference drug, 5HA. The lead 
ligand MCULE 8572723302-0-2 exhibited exceptional 
stability in the docking complex with BACE1, suggest-
ing a more robust interaction than the reference mol-
ecule. These collective findings underscore the potential 
of lead ligands, especially MCULE 8572723302-0-2 and 
MCULE-3872425295-0-7, as promising drug candidates 
for addressing treatment. Their strong binding affinities, 
favorable characteristics for oral absorption, and stabil-
ity in interactions with the target protein position them as 
compelling candidates for further development and opti-
mization in the pursuit of potential drugs for Alzheimer ’s 
disease treatment.

4. Conclusion
Alzheimer's has a considerable impact on the physi-

ological well-being and self-care capabilities of the el-
derly, and it remains a critical global healthcare challenge. 
Research on the pathophysiological and neuropathologi-
cal aspects of AD is ongoing and meticulous. Current AD 
treatments aim to rectify the neurotransmitter imbalance. 
Comprehensive care for individuals with AD requires the 
management of vascular risk factors, such as hyperlip-
idemia, diabetes, and hypertension. Holistic patient care 
involves monitoring of hydration, sleep patterns, and 
nutritional status. Clinical trial setbacks for AD disease-
modifying therapies result from factors such as delayed 
intervention, suboptimal dosages, misdirected primary 
treatment targets, and incomplete understanding of AD's 
pathophysiology of AD. An enhanced understanding of 
AD's multifaceted pathophysiology of AD is essential 
for refining therapeutic strategies and advancing effec-
tive interventions. Based on a comprehensive analysis of 
various ligands, MCULE-3872425295-0-7 emerged as the 
most promising drug candidate. This conclusion is based 
on a thorough assessment of factors such as binding af-
finity, pharmacokinetics, and potential therapeutic effects. 
MCULE-3872425295-0-7 displays superior attributes in 
these aspects compared to other ligands, indicating its po-
tential as a highly effective drug candidate. This conclu-
sion was supported by a holistic evaluation of the data, 
which suggested that MCULE-3872425295-0-7 stood out 
among the candidates studied.
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