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1. Introduction
Lung cancer is the most prevalent and deadly cancer 

worldwide [1]. The age-standardized rate (ASR) of lung 
cancer in Egypt is 7.6 [2]. Lung cancer incidence among 
Arabs is alarmingly increasing. It is expected that by 2030 
there will be 1.8-fold increase in cancer incidence in the 
Eastern Mediterranean Region and Gulf states [3]. Eigh-
ty-five percent of patients with lung cancer have a group 
of microscopic subtypes collectively known as non-small 
cell lung cancer (NSCLC); while the remaining 15% are 
small cell lung cancer (SCLC)[4, 5]. NSCLC is more re-
sistant to chemotherapy in comparison to SCLC [6]. Un-
fortunately, treatment of lung cancer is still unsatisfactory. 

Despite accelerating improvement of multiple therapeutic 
approaches, the 5-year overall survival rate for patients 
with lung cancer is still poor [7].

Immunotherapy which is the treatment modality that 
evokes the immune system to eliminate cancerous cells, 
has joined the therapeutic arsenal of conventional thera-
pies for lung cancer [8]. Immune checkpoints are pres-
ent on T cells, antigen-presenting cells (APCs) as well as 
cancerous cells. They are responsible for modulating the 
homeostasis of both the co-stimulatory and the co-inhi-
bitory signals which are critical to immune tolerance [9]. 
Thus, immune checkpoint therapy targeting co-inhibitory 
pathways in T cells can enhance anticancer T cell cyto-
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toxicity-mediated immune response. Currently, one of the 
well-studied immune checkpoints is programmed death-1 
(PD-1)/PD-ligand 1 (PD-L1). PD-1 is located on the sur-
face of T-cells, whereas PD-L1 is found on tumor cells. 
The interaction of PD-L1 and its receptor PD-1 results in 
cancer cells evasion from immune destruction [10–12]. 

Of note, several miRNAs suppress the expression of 
PD-L1 such as miRNA 34, miRNA 197, and miRNA 200 
family [13–15]. As known, micro RNAs (miRNAs) are a 
group of single-stranded non-coding RNAs that are small 
in size ranging from 20–22 nucleotides. They are high-
ly conserved evolutionally among species [16, 17]. The 
miRNA 200 family consists of two clusters of miRNAs. 
The first cluster contains miRNA 200a, miRNA 200b and 
miRNA 429. The second cluster contains the following 
pre-miRNAs; miRNA 200c and miRNA 141. [18, 19].

The miRNA 200-c-3p is the most widely studied strand 
of the miRNA 200-c family member and it is more bio-
logically active than the miRNA 200-c-5p strand. It was 
found that miRNA 200-c-3p can act as a positive or nega-
tive regulator of epithelial-mesenchymal transition (EMT) 
in different cells and tissue types [20–22]. MiRNA 200-c-
3p can modulate tumor proliferation, invasion and metas-
tasis by acting differentially on  the EMT process [23–25]. 
Due to its differential expression and actions in various 
tissue and cells, miRNA 200-c-3p is reported as being ei-
ther a tumor-suppressive or an oncogenic miRNA in many 
cancer types [24, 25].

Different modalities and combinational therapies regar-
ding immune checkpoint inhibitors are being implemented 
nowadays, but there is a risk of developing multiple ad-
verse effects which might be serious. Immune-related 
adverse events (IRAEs) are common with occurrence rate 
reaching up to 70% with anti-PD-1/PD-L1 therapy [26, 
27]. So, there are increasing efforts to investigate other 
ways to establish immune check point deregulation that 
might evoke less adverse effects. 

The present study aimed to evaluate the effect of miR-
NA 200-c-3p mimic/inhibitor transfection in A549 NS-
CLC cell line as a future target to immunotherapy.

2. Materials and Methods 
2.1. Study design

The study protocol was approved by the Faculty of 
Medicine Ain Shams University review board and re-
search ethics committee. The study was conducted on 
non-small cell lung cancer cell line A549 in Department 
of Medical Biochemistry and Molecular Biology, Facul-
ty of Medicine, Ain Sham University. The experimental 
design included 7 study groups, namely: A549 untreated 
cells, A549 Mock cells (cells transfected with transfection 
regent only), A549 cells transfected with miRNA 200-c-
3p mimic, A549 cells transfected with miRNA 200-c-3p 
inhibitor, A549 cells transfected with miRNA mimic-posi-
tive control, A549 cells transfected with miRNA inhibitor-
positive control, and A549 cells transfected with miRNA 
mimic/inhibitor-negative control. Viability, proliferative 
ability and apoptosis in non-small cell lung cancer were 
evaluated. The molecular effect of miRNA-200c-3p on the 
expression of PD-L1 relative gene expression and relative 
protein level was investigated. Finally, the effect of miR-
NA 200-c-3p mimic/inhibitor on T cell anti-tumor cyto-
toxicity was explored.

2.2. Cell culture growth and maintenance
The non-small lung cancer A549 cell line was purchased 

from NAWAH SCIENTIFIC Company, Cairo, Egypt. The 
cell line was cultured in 100ml Dulbecco’s Modified Eagle 
medium (DMEM) (Catalog No. 11960044, ThermoFisher 
Scientific, USA) with 10% Fetal Bovine serum (FBS) 
(Catalog No. 26140079, ThermoFisher Scientific) and 1% 
penicillin /streptomycin. The cells were grown in vitro as 
adherent cells in T25 flask, incubated for 48 hours at 37°C 
and 5% CO2. 

2.3. Cell transfection 
The miRNA 200-c-3-p inhibitor (Anti-hsa-miRNA 

200-c-3p miRNA Inhibitor, Catalog No: AM17000, miR-
Base Accession No: MIMAT0000617) was purchased 
from ThermoFisher Scientific. MiRNA 200-c-3-p mimic 
(Syn-hsa-miR-200-c-3p miScript miRNA Mimic, Cata-
log No: MSY0000617), miRNA mimic- positive control 
(Syn-hsa-miR-1 miScript miRNA Mimic, Catalog No. 
MSY0000416), miRNA inhibitor- positive control (An-
ti-has miR-1 miScript miRNA Inhibitor, Catalog No. 
MIN0000416 and Syn-hsa-miR-1 miScript miRNA Mi-
mic Catalog No. MSY0000416) and miRNA mimic/inhi-
bitor- negative control (AllStars Negative Control siRNA, 
Catalog no. 1027280) were all ordered from QIAGEN, 
Hilden, Germany.  Transfection was performed using the 
24-well plates. MiRNA mimic-positive control was used 
to confirm that the experimental system was working as 
expected and the mimic was efficiently transfected and 
caused downregulation of the target gene. MiRNA mimic/
inhibitor -negative control indicates whether the results 
are nonspecific or specific to the miRNA 200-c-3p mimic/
inhibitor (i.e., Comparison of results from the negative 
control with results from the miRNA 200-c-3p mimic/in-
hibitor was used to confirm that the observed results were 
specific to the miRNA 200-c-3p mimic/inhibitor). MiRNA 
inhibitor-positive control excludes that the obtained results 
are due to the effect of other miRNAs (other than miRNA 
200-c-3p) that have the same target gene. 

In this protocol, one day before transfection, 1.6 x 105 

cells were seeded per well in a 24-well plate and 500 μl 
of DMEM culture medium containing serum and antibio-
tics were added. The cells were incubated under normal 
growth conditions (typically at 37°C and 5% CO2). MiR-
NA 200-c-3p mimic (0.15 μl), miRNA 200-c-3p inhibitor 
(1.5 μl), mimic positive- control (0.15 μl), inhibitor-posi-
tive control (0.15 μl) and negative controls (1.5 μl) were 
diluted each with 100 μl culture medium without serum 
followed by the addition of 1.5 μl HiPerFect Transfection 
Reagent for each reaction (Catalog No: 301704, QIAGEN) 
to form a miRNA/HiPerfect transfection complexes. After 
complex formation (incubation for 10 min at room tem-
perature 20°C), the complex mixtures were added to the 
A549 cells in the wells drop-wise[28]. 

2.4. Cell viability by trypan blue assay 
Total cell count was recorded by a hemocytometer (Ca-

talog No. 22-600-107, ThermoFisher Scientific), followed 
by trypan blue staining. The stained and unstained cells 
were counted. Blue-stained cells are non-viable and uns-
tained cells are viable. The percentage of viable cells was 
calculated using the following equation: (No. of viable 
cells/ Total No. of cells) x 100 = % viability[29].
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using the Image J software. The levels of the targeted pro-
teins were quantified through densitometry[30].

2.8. Estimation of PD-L1 relative gene expression by 
real‐time reverse transcription-quantitative polyme-
rase chain reaction (RT-qPCR) (according to manufac-
turer's instructions)

Total RNA was extracted from A549 cells using miS-
cript RNA Mini kit (Catalog. No. 217004, QIAGEN) ac-
cording to the manufacturer’s protocol. The samples were 
considered with good RNA quality when RNA: Protein ra-
tio (260:280 ratio) was approximately 1.8. Reverse trans-
cription was performed using miScript II RT Kit (Catalog 
No. 218160, QIAGEN) following the manufacturer’s pro-
tocol. The undiluted complementary DNA (cDNA) was 
transferred to −20°C until later use in RT-qPCR that was 
performed using QuantiTect SYBR Green PCR kit (Cata-
log No. 2041413, QIAGEN). QuantiTect Primer Assays 
for PD-L1 (Catalog No. 249900, ID: QT00056322) and 
β‐actin as a house keeping gene (Catalog No. 249900, ID: 
QT00095431) both purchased from QIAGEN. Three μL of 
cDNA was used in a total reaction volume of 20 μL. Ini-
tial activation was done at 95°C for 15 minutes followed 
three-steps cycling: denaturation for 15 seconds at 94ºC, 
annealing for 30 seconds at 55ºC, and extension for 30 
seconds at 70ºC, for 40 cycles. Data acquisition was per-
formed during the extension step. The fold change (FC) of 
PD-L1 gene expression level was normalized to internal 
control (β-actin) and relative to calibrator (mRNA from 
untreated cells). The fold change was calculated using the 
equation 2-∆∆Ct (Livak & Schmittgen, 2001).

2.9. Co-culture of A549 transfected cells with activated 
CD8+ T cells (according to manufacturer's instructions)

T cells were isolated from peripheral blood samples, 
activated and co-cultivated with A549 cells which have 
been previously treated with miRNA 200-c-3p mimic and 
inhibitor.

2.9.1. Polymorph nuclear cells (PMNCs) isolation 
Blood sample was diluted with phosphate-buffered sa-

line (PBS) solution (1:1 dilution). Blood was layered over 
a Ficoll (Catalog No. 45-001-750, ThermoFisher Scienti-
fic) medium, and spun at 833 xg (2125 rpm for 20 min, at 
20°C). Cells at the interphase were carefully collected and 
washed and re-suspended in isolation buffer (PBS which 
is Ca2+ and Mg2+ free supplemented with 0.1% BSA and 2 
mM EDTA).

2.9.2. Isolation of CD8+ T cells from PMNCs
CD8+T cells were isolated from PMNCs using Dyna-

beads® Untouched™ Human CD8+ T Cells (Catalog No. 
11348D. ThermoFisher Scientific). 100 μL Antibody Mix 
was added to PMNCs in isolation buffer and incubated for 
20 min at 8°C. cells were washed in isolation buffer then 
500 μL pre-washed Dynabeads were added and incubated 
for 15 min at 25°C. The tube was placed in magnet (Dyna-
Mag™-5, Catalog No. 12303D. ThermoFisher Scientific) 
for 2 minutes then the supernatant containing the untou-
ched human CD8+ T cells was collected. 

2.9.3. T cell activation
The Dynabeads® Human T-Activator CD3/CD28 

(Catalog No. 11131D. ThermoFisher Scientific) was used 

2.5. Cell apoptosis detection by flow cytometry (accor-
ding to manufacturer's instructions.) 

The assay was done using the Annexin V apoptosis 
detection kit (Catalog No: BMS500FI-100, ThermoFisher 
Scientific). The harvested cells were washed in phosphate-
buffered saline (PBS) and then re-suspended in binding 
buffer at 5 x 106 cells/ mL.  Five μL of fluorochrome-
conjugated Annexin V were added to 100 μL of the cell 
suspension and incubated for 15 minutes at room tempera-
ture. Then cells were washed and re-suspended in binding 
buffer. Five μL of Propidium Iodide staining solution were 
added to the cells, and incubated for 15 minutes on ice in 
the dark. Stained cells were analyzed by flow cytometry 
within 4 hours. Alive cells are negative for both Annexin V 
and Propidium iodide, early apoptotic cells are Annexin V 
positive and Propidium iodide negative, while late apopto-
tic/necrotic cells are positive for both Annexin V and Pro-
pidium iodide.

2.6. Assessment of A549 cells proliferative activity by 
(3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium 
bromide) MTT assay

Cell proliferative activity was performed using the 
Vybrant® MTT Cell Proliferation Assay Kit (Catalog No. 
M6494, ThermoFisher Scientific). The A549 transfected 
cells (8×103 cells per well) were seeded in 96 well culture 
plate and incubated at 37°C with 5% CO2

 for 72 hours. 
Twenty µL of MTT solution were added to each well and 
the plates were incubated at 37°C and 5% CO2 for four 
hours. Then, 100 μL of Sodium dodecyl-sulfate-hydro-
chloric acid (SDS-HCL) was added to the wells. Cell pro-
liferative activity was determined by measuring the optical 
density at 570 nm on a spectrophotometer (ELx 800; Bio-
Tek Instruments Inc., Winooski, VT, USA). Results were 
expressed in optical density, where levels of optical den-
sity are directly proportional to proliferative activity[29].

2.7. Western immunoblot analysis for detection of PD-
L1 relative protein level

The A549 cells were lysed with the radioimmunopre-
cipitation assay lysis buffer (RIPA) (Catalog No. 89900, 
ThermoFisher Scientific). Then, the lysates were centrifu-
ged at 14,000×g for 15 minutes, and the supernatants were 
harvested for protein assay. After being quantified with 
bicinchoninic acid (BCA) protein assay kit (Catalog No. 
23227, ThermoFisher Scientific), the protein samples were 
separated using 10% sodium dodecyl sulfate–polyacryla-
mide gel electrophoresis and transferred to nitrocellulose 
membrane (Catalog No. 88018, Thermo Scientific mem-
branes). The membranes were blocked with Tris-buffe-
red saline supplemented with 3% BSA, 0.1% Tween® 20 
then incubated with primary antibodies at 4°C overnight. 
The PD-L1 monoclonal antibody (Catalog No. 14-5983-
82) and the Glyceraldehyde-3-Phosphate Dehydrogenase 
(GAPDH) Loading Control Antibody (Catalog No. MA5-
15738) used as reference protein were all purchased from 
ThermoFisher Scientific.  After binding to secondary anti-
bodies (Biotin- XX goat anti-rabbit IgG (H+L) Catalog 
No.1305936, ThermoFisher Scientific), the “Qdot R 625 
streptavidin conjugate” (Catalog No. W10142, ThermoFi-
sher Scientific) was added on the membrane and was left 
over night on a rocking platform, then the substrate was 
discarded. Calculation of Protein concentration relative 
to the internal control protein (GAPDH) was performed 
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for activation of T cells. Purified T cells (8 × 104) in 200 
μL OpTmizer™ T Cell Expansion serum-free medium 
(Catalog No. 0080022SA. ThermoFisher Scientific) were 
placed in a 96-well tissue culture plate then 2 μL of pre-
washed and re-suspended Dynabeads were added to obtain 
a bead-to-cell ratio of 1:1. Then cells were incubated in a 
humidified CO2 incubator at 37°C for 48 hours. The acti-
vated T cells were harvested and directly used.

2.9.4. Co-culture of A549 transfected cells with activa-
ted CD8+ T cells

A549 cells transfected with miRNA 200-c-3p mimic 
and inhibitor were co-cultured with activated CD3/CD28 
positive CD8+ T cells for 72 hours in DMEM media sup-
plemented with 11% penicillin /streptomycin in 96 well 
plates. The cultured cells were incubated at 37°C and 5% 
CO2 for 24 hours then MTT assay was performed as des-
cribed before.

2.10. Statistical analysis
All analyses from experiments were performed using 

Statistical Package for the Social Sciences (SPSS software 
version 20). The data were expressed as mean ± standard 
deviation (SD). Multiple comparisons were performed 
using one-way analysis of variance (ANOVA) followed 
by Tukey’s multiple-comparison test, where p < 0.05 was 
considered significant. 

3. Results
We compared A549 untreated cells to A549 Mock cells 

for all parameters studied. There were no significant diffe-
rences between the two groups (Figure 1 A, B), (Figure 2 
A, B), (Figure 3 A, C, E, G) and (Figure 4 lanes 3, 4).

3.1. Effect of miRNA 200-c-3p mimic and inhibitor on 
A549 cell viability

Trypan blue viability assay revealed non-significant 
difference in the mean values of viable cell number and 
viability percentage among A549 Mock cells, A549 cells 
transfected with miRNA mimic-positive control and A549 
cells transfected with miRNA mimic-negative control 
(P>0.05) as shown in (Figure 1 C, D) which denotes effec-
tive transfection. Transfection with miRNA 200-c-3p mi-
mic reduced the viable cell number and viability percen-
tage compared to A549 Mock cells, A549 cells transfected 
with miRNA mimic-positive control and A549 cells trans-
fected with miRNA mimic-negative control (P<0.05) as 
shown in (Figure 1 C, D). 

On the other hand, transfection with miRNA 200-c-3p 
inhibitor resulted in an increase in the mean of viable cell 
count compared to A549 Mock cells, A549 cells trans-
fected with miRNA inhibitor-positive control and A549 
cells transfected with miRNA inhibitor-negative control 
(P<0.05), (Figure 1 E).  While there was no significant 
difference in the viability percentage compared to A549 
Mock cells, A549 cells transfected with miRNA inhibitor-
positive control and A549 cells transfected with miRNA 
inhibitor-negative control (P>0.05) as shown in (Figure 1 
F); since that miRNA 200-c-3p inhibitor increased the to-
tal cell count of the A549 cells with concomitant increase 
in the viable cells so that the viability percentage remained 
unchanged. There was high significant difference in viable 
cell number and viability percentage between A549 cells 
transfected with miRNA 200-c-3p mimic and A549 cells 

transfected with miRNA 200-c-3p inhibitor (P<0.01) as 
shown in (Figure 1 G, H).

While performing flowcytometric analysis it was noted 
that the viability percentage of A549 cells transfected with 
miRNA 200-c-3p mimic was significantly reduced compa-
red to A549 Mock cells (P<0.05) as shown in (Figure 2 C). 
But the viability percentage of A549 cells transfected with 
miRNA 200-c-3p inhibitor had no significant difference 
when compared to A549 Mock cells (P>0.05). There was 
a significant difference in viability percentage between 
A549 cells transfected with miRNA 200-c-3p mimic and 
A549 cells transfected with miRNA 200-c-3p inhibitor 
(P<0.01) as shown in (Figure 2 C).

3.2. Effect of miRNA 200-c-3p mimic and inhibitor on 
A549 cell apoptosis

As shown in (Figure 2 D, E), A549 cells transfected 

Fig. 1. Results of viability assay in the studied groups. (A& B) means 
of viable cell number and viability percentage of A549 untreated cells 
and A549 Mock cells via trypan blue staining. (C, D, E, F) means of 
viable cell number and viability percentage of A549 cells transfected 
with miRNA 200-c-3p mimic/inhibitor versus controls, respectively. 
(G& H) means of viable cell number and viability percentage of A549 
cells transfected with miRNA 200-c-3p mimic and A549 cells trans-
fected with miRNA 200-c-3p inhibitor, respectively. (*) Significant 
comparison between A549 Mock cells group and A549cells trans-
fected with miRNA 200-c-3p mimic/ inhibitor group. (#) Significant 
comparison between A549 cells transfected with miRNA 200-c-3p 
mimic/ inhibitor group and A549 cells transfected with mimic/inhibi-
tor-positive control group. ($) Significant comparison between A549 
cells transfected with miRNA 200-c-3p mimic/inhibitor group and 
A549 cells transfected with mimic/inhibitor-negative control group. 
(&) Significant comparison between A549 cells transfected with miR-
NA 200-c-3p mimic group and A549 cells transfected with miRNA 
200-c-3p inhibitor group.
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with miRNA 200-c-3p mimic had significantly eleva-
ted apoptotic percentage compared to A549 Mock cells 
(P<0.01). No significant difference was recorded in A549 
cells transfected with miRNA 200-c-3p inhibitor compa-
red to A549 Mock cells (P>0.05). There was a significant 
difference between A549 cells transfected with miRNA 
200-c-3p mimic and A549 cells transfected with miRNA 
200-c-3p inhibitor in apoptotic percentage (P<0.05).

3.3. Effect of miRNA 200-c-3p mimic/inhibitor on A549 
cell proliferative activity

Our study revealed that transfection with miRNA 200-
c-3p mimic hindered the proliferative activity of the A549 
cells when compared to A549 Mock cells (P<0.05), while 
transfection with miRNA 200-c-3p inhibitor significantly 
promoted A549 cells proliferative activity when compared 
to A549 Mock cells (P<0.05) as shown in (Figure 3 B).

3.4. Effect of miRNA 200-c-3p replacement and sup-
pression on PD-L1 relative gene expression and rela-
tive protein level

A549 cells transfected with miRNA 200-c-3p mimic 
had significantly downregulated level of PD-L1 gene when 

compared to A549 Mock cells (P<0.05), While A549 cells 
transfected with miRNA 200-c-3p inhibitor showed signi-
ficant upregulation in the expression of PD-L1 gene when 
compared to A549 Mock cells (P<0.05) as shown in (Fi-
gure 3 D). Regarding the effect of miRNA 200-c-3p repla-
cement and suppression on PD-L1 relative protein level, it 
was found that A549 cells transfected with miRNA 200-c-
3p mimic had significantly lower PD-L1 relative protein 
level when to compared to A549 Mock cells (P<0.05), 
while A549 cells transfected with miRNA 200-c-3p inhibi-
tor had markedly increased relative level of PD-L1 protein 
when compared to A549 Mock cells (P<0.05) as shown in 
(Figure 3 F) and (Figure 4).

3.5. Co-culture of A549 transfected cells (with either 
miRNA 200-c-3p mimic or inhibitor) with isolated and 
activated CD8+ T cells

After T cell isolation and activation, T cells were co-

Fig. 2. Flowcytometric analysis of studied groups. (A& B) mean of 
alive cells percentage and mean of apoptotic cells percentage by flow 
cytometer in A549 untreated cells and A549 Mock cells, respecti-
vely. (C& D) mean of alive cells percentage and mean of apoptotic 
cells percentage by flow cytometer in A549 Mock cells, A549 cells 
transfected with miRNA 200-c-3p mimic and A549 cells transfected 
with miRNA 200-c-3p inhibitor, respectively. (E) Flowcytometric 
histograms of A549 Mock cells, A549 cells transfected with miRNA 
200-c-3p mimic and A549 cells transfected with miRNA 200-c-3p 
inhibitor. (*) Significant comparison between A549 Mock cells group 
and A549 cells transfected with miRNA 200-c-3p mimic group. ($) 
Significant comparison between A549 cells transfected with miRNA 
200-c-3p mimic group and A549 cells transfected with miRNA 200-
c-3p inhibitor group. 

Fig. 3. Flowcytometric analysis of studied groups. (A& B) mean of 
alive cells percentage and mean of apoptotic cells percentage by flow 
cytometer in A549 untreated cells and A549 Mock cells, respecti-
vely. (C& D) mean of alive cells percentage and mean of apoptotic 
cells percentage by flow cytometer in A549 Mock cells, A549 cells 
transfected with miRNA 200-c-3p mimic and A549 cells transfected 
with miRNA 200-c-3p inhibitor, respectively. (E) Flowcytometric 
histograms of A549 Mock cells, A549 cells transfected with miRNA 
200-c-3p mimic and A549 cells transfected with miRNA 200-c-3p 
inhibitor. (*) Significant comparison between A549 Mock cells group 
and A549 cells transfected with miRNA 200-c-3p mimic group. ($) 
Significant comparison between A549 cells transfected with miRNA 
200-c-3p mimic group and A549 cells transfected with miRNA 200-
c-3p inhibitor group. 
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cultured with A549 cells transfected miRNA 200-c-3p mi-
mic or inhibitor followed by MTT assay to detect the effect 
of miRNA 200-c-3p replacement and suppression on the 
immune recognition of the A549 cells. In this study, co-
culture with A549 cells transfected with miRNA 200-c-3p 
mimic showed significant increase in the immune recogni-
tion by the T cells when compared to the A549 Mock cells 
(P<0.05), which was evidenced by markedly reduced pro-
liferative activity of the A549 cells. On the other hand, co-
culture with A549 cells transfected with miRNA 200-c-3p 
inhibitor exhibited lesser immune recognition when com-
pared to the Mock cells (P<0.05), which was evidenced by 
increased proliferative activity of the A549 cells transfec-
ted with miRNA 200-c-3p inhibitor which exceeded the 
proliferative ability of the Mock cells as shown in (Figure 
3 H).

4. Discussion
Based on the current knowledge of how miRNAs af-

fect tumor cell behavior, tumor initiation, progression and 
dissemination, therapies targeting miRNAs are proposed. 
MiRNA mimics or miRNA-expressing vectors are used 
in settings where there is down-regulation of the target 
miRNA, and the aim is to restore its level. On the other 
hand, anti-miRNAs or miRNA inhibitors (modified anti-
sense nucleotides) are used in settings where there is up-
regulation of the target miRNA, and the aim is to abolish 
this increased level. So, miRNA mimics and inhibitors are 
being used to restore balanced gene networks in lung can-
cer cell lines and xenograft animal models [14].

The objectives of this study were to evaluate the effects 
of miRNA 200-c-3p replacement and suppression on the 
viability, proliferative ability, and apoptosis in non-small 
cell lung cancer. Moreover, we investigated the impact of 
miRNA 200-c-3p replacement and suppression on the ex-
pression of PD-L1 gene and protein level and consequent-
ly its impact on the T cell-mediated antitumor cytotoxicity.

In the salient study, miRNA 200-c-3p mimic trans-
fected cells showed marked significant reduction in the 
absolute number of viable cells and percentage of cell 
viability compared to A549 Mock (untransfected) cells. 
For validation, A549 cells transfected with miRNA 200-c-
3p inhibitor showed a significant increase in the absolute 
number of viable cells; while the percentage of cell via-
bility remained unchanged compared to the A549 Mock 
cells. Reported contradictory results, as miRNA 200-c-3p 
suppression resulted in decreased cell viability in pituitary 
adenoma [31]. In line with our findings, Yu et al.,  demons-
trated a significant reduction in cell viability obtained with 
miRNA 200-c-3p mimic transfection and significantly 
enhanced viability when cells were transfected with the 
inhibitor on murine BV-2 cell line [32]. Recently,  Dong 
et al.,  found an inverse relation between miRNA 200-c-3p 
expression level and cell viability in their study on endo-
metriosis where they reported that miRNA 200-c-3p over-
expression led to decreased viability while suppression 
of miRNA 200-c-3p resulted in enhanced viability [33]. 
However, Y. Wang et al.,  demonstrated an inverse rela-
tion between miRNA 200-c-3p inhibitor  and cell viability 
where  miRNA 200-c-3p inhibitor was found to have anti-
oncogenic effect on gastric cell carcinoma BGC-823 and 
gastric mucosal epithelial cell GES-1cell lines [24].

In the current study, a significant reduction in the pro-
liferative activity was observed in cells transfected with 

miRNA 200-c-3p mimic compared to A549 Mock cells, a 
result reflects the anti-oncogenic effect of miRNA 200-c-3p 
on A549 cells. On the other hand, a marked increase in the 
proliferative activity in cells transfected with miRNA 200-
c-3p inhibitor was noticed. These findings are consistent 
with previous research indicating that miRNA 200-c-3p 
has an inhibitory effect on various cancer cells. For ins-
tance, miRNA 200-c inhibited cell proliferation in human 
bladder cancer and endometriosis [33, 34]. Such benefi-
cial effect was explained by down regulation of ERK1/2 as 
mentioned by Katoch et al [35]. Both [36] and [23] have 
recorded results in concordance with the aforementioned 
studies and our study about the relation between miRNA 
200-c-3p expression and cell proliferation in rat renal arte-
ry endothelial cell and epithelial ovarian cancer cells, res-
pectively. While others demonstrated that miRNA 200-c 
had oncogenic effects as it increased the proliferation rate 
which favors tumor progression in endometrial carcinoma 
cells [37], colorectal cancer [38] and human papillary thy-
roid carcinoma cell lines TPC-1 and K1 [39].

Our results revealed that cells transfected with miRNA 
200-c-3p mimic exhibited marked increase in apoptotic 
cells compared to A549 Mock cells; while the reverse 
was noticed in cells transfected with miRNA 200-c-3p 
inhibitor. These findings were in accordance with studies 
performed in cancer colon [40] and Fanconi anemia pa-
thway functionally deficient lung cancers [41]. The anti-
apoptotic effect of miRNA 200-c-3p may be mediated by 
down-regulation of phosphor-AKT (ser473) that induces 
anti-apoptotic proteins like Bcl-xl and represses pro-apop-
totic proteins like Bim [35]. In contrast, C.-H. Chen et al.,  
reported that silencing of miRNA 200-c expression pro-
moted apoptosis in pituitary tumors while miRNA 200-c 
replacement was associated with decreased apoptosis [31].

Tumor cells develop many mechanisms and strategies 
to avoid recognition and destruction by the circulating 
immune cells. Established tumors are thought to evolve by 
selecting tumor clones that can evade being recognized by 
the immune system, a process known as immunoediting 
[42].

Tumor cells can directly evade immune recognition by 
down regulating features that make them vulnerable such 
as tumor antigens or MHC class I, or indirectly by taking 
advantage of negative feedback mechanisms that the body 
has evolved to prevent immunopathology as immune 
checkpoints like PD-1/PD-L1 pair [43].

As known, PD-1/PD-L1 signaling pathway leads to 
attenuation of the T-cell response, induces apoptosis of tu-
mor-specific T cells, and promotes differentiation of CD4+ 

Fig. 4. Western blotting analysis. Nitrocellulose membrane illustrates 
the expression of PD-L1 protein (65kDa) compared to Glyceraldehyde 
3 phosphate dehydrogenase (GAPDH) ‘reference protein’ (37kDa). 
Lane 1 and 2: A549 cells transfected with miRNA 200-c-3p mimic, 
lane 3 and 4: 549 untreated cells A549 Mock cells, respectively. lane 
5and 6: A549 cells transfected with miRNA 200-c-3p inhibitor.
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T cells into Tregs all of which lead to tumor cell resistance 
[44]. So, the disruption of the PD-1/PD-L1 interaction is 
beneficial to restore the anti-tumor T cell cytotoxicity. 

In a very recent study conducted by Cercek et al., dos-
tarlimab, an anti–PD-1 monoclonal antibody was used in 
locally advanced rectal cancer. Despite achieving promi-
sing results, it still led to immune-related adverse effects 
due to the relatively long duration of anti-body administra-
tion (6 months)[45].

As per our study, the relative gene expression of PD-L1 
and relative protein level was significantly reduced upon 
cell transfection with miRNA 200-c-3p mimic, and the 
opposite was observed in the case of cell transfection with 
miRNA 200-c-3p inhibitor. Similarly, the negative impact 
of miRNA 200-c-3p on PD-L1 was noted in breast cancer 
[46], cancer colon [47], gastric cancer [48], and ovarian 
cancer [23].

In the current study, our main goal was to evaluate 
the impact of PD-L1 level, after transfection with miR-
NA-200c-3p mimic and inhibitor, on the T cell-mediated 
anti-tumor cytotoxicity. Co-culture of A549 cells trans-
fected with miRNA 200-c-3p mimic with activated T 
cells was accompanied by marked enhancement of T cell 
cytotoxicity towards the tumor cells that was evidenced 
by lowered proliferative ability compared to A549 Mock 
cells co-cultured with activated T-cells. The reverse was 
noticed upon co-culture of A549 cells transfected with 
miRNA 200-c-3p inhibitor with activated T cells.  In the 
same context, it was reported that down-regulation of PD-
L1 effectively improved T cytotoxicity and led to immu-
nogenic cell death of melanoma cells [49]. Further, T cell 
activation and cytotoxicity were evident against high-
grade serous ovarian cancer after treatment with biphasic 
anti-PD-1/PD-L1 antibody and monophasic anti-PD-L1 
antibody [50]. Additionally, Chen et al, demonstrated that 
tumor-released exosomes expressing PD-L1 led to T cell 
exhaustion during metastasis progression and upon treat-
ment with PD-L1 blockade, T cell activation and cytotoxi-
city were restored in pulmonary metastasis model with 
melanoma cells [51]. Moreover, Nguyen et al.,  in their 
study on murine colon carcinoma MC-38 cell line, intro-
duced miRNA 200-c loaded nanoparticles which led to 
down regulation of PD-L1 and enhanced T cell activation 
and cytotoxicity towards the tumor cells [52].

5. Conclusion
We performed an assessment of miRNA 200-c-3p mi-

mic/inhibitor effects in non-small cell lung cancer. MiRNA 
200-c-3p mimic transfection led to decreased cell viability, 
proliferation, and increased apoptosis. Additionally, it was 
associated with decreased PD-L1 relative gene expression 
and relative protein level. These results shed light to the 
anti-oncogenic effect of miRNA 200-c-3p. Also, miRNA 
200-c-3p mimic transfection improved the T cell anti-tu-
mor cytotoxicity. Conversely, miRNA 200-c-3p inhibitor 
transfection led to opposite results. 
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