
254

Introduction

Non-alcoholic fatty liver disease (NAFLD) refers to 
hepatic steatosis caused by fat accumulation in the liver 
that is not caused by viral infection, alcohol consump-
tion, or genetic factors (1). The main pathological feature 
of NAFLD is the accumulation of triglycerides and free 
cholesterol (2). Its pathogenesis is related to a variety of 
factors, such as altered intestinal flora, obesity, and dis-
turbances in body lipid homeostasis (3). NAFLD is not 
only associated with 25-40% of cases of elevated liver 
enzymes but also with the development of cardiovascu-
lar disease and type 2 diabetes (1, 4). As the disease pro-
gresses, NAFLD can lead to non-alcoholic steatohepatitis, 
cirrhosis and even the development of liver cancer (5). The 
prevalence of NAFLD in the world is currently about 30% 
and is expected to increase in the coming years (6). Liver 
biopsy is the gold standard for the current diagnosis and 
prognosis of NAFLD, and the main treatment for NAFLD 
is weight loss and vitamin supplementation (7, 8). Moreo-
ver, to date, the available non-invasive or minimally inva-
sive biomarkers are insufficient, so finding key diagnostic 
biomarkers in NAFLD is important for the diagnosis and 
targeted treatment of NAFLD.

Approximately 40% of NAFLD patients in Korea are 
non-obese or thin (9), therefore the occurrence of NAFLD 
may be related not only to physical dysfunction but also 
to other causes. The interaction between the intestine and 
the liver regulates the homeostasis between the organs of 
the body, which is important for the health of the indi-
vidual (10). Acetic acid, propionic acid and butyric acid 
are produced by intestinal microorganisms, and reduced 
levels of these short-chain fatty acids can trigger NAFLD 
by promoting gluconeogenesis and inflammation (11-13). 
Among these, propionate is the main product of dietary 
fiber fermentation in the colon, which is thought to reduce 
adipogenesis, serum cholesterol levels, and other tissue 
carcinogenic effects (14). It was found through repeated 
observations that when animals were fed fermentable 
fibers, they were prevented from steatosis induced by a 
high-fat diet, probably because propionate when absorbed 
from the portal vein, can alter hepatic metabolic pro-
cesses to reduce lipid content (15). In addition, it has been 
found that propionate may reduce atherosclerosis through 
immune-dependent regulation of intestinal cholesterol 
metabolism (16). Non-alcoholic steatohepatitis, as a pro-
gressive form of NAFLD, is marked by inflammation and 
hepatocellular damage (17). NAFLD itself is also conside-
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red to be a chronic inflammatory disease (18). However, 
the combined role of immune features and propionate in 
NAFLD has not been reported.

Therefore, in this study, based on the transcriptome 
sequencing data of NAFLD in GEO, five immune-propio-
nate metabolism-related NAFLD diagnostic genes were 
screened by a series of bioinformatics tools such as PPI 
network and WGCNA analysis. In addition, we created a 
ceRNA network of biomarkers and performed drug predic-
tion of diagnostic genes. It provides an important reference 
for the study of the regulatory mechanism of immune and 
propionate metabolism-related genes in NAFLD.

Materials and Methods

Source of data
The GSE89632 and GSE126848 datasets were sourced 

from the GEO database. The GSE89632 dataset includes 
20 simple steatosis (SS) samples and 24 health control 
(HC) samples, and the GSE126848 dataset includes 15 SS 
samples and 14 HC samples. In this study, GSE89632 was 
utilized as the training set and GSE126848 was used as 
the validation set. Then, 394 propionate metabolism-re-
lated genes (PMRGs) were obtained from the GeneCards 
database.

Identification of DE-PMRGs and construction of PPI 
networks

Differentially expressed genes1 (DEGs1) and DEGs2 
between the SS and HC groups were selected in the 
GSE89632 and GSE126848 datasets with P value < 0.05 
and |log2FC| > 0.5, respectively. The differential analysis 
was carried out by using the limma package (v 3.42.2) 
(19) and DESeq2 package (v 1.34.0) (20), respectively. 
The results of the differential analysis were illustrated 
by volcano maps and heatmaps (Top 100) plotted by the 
ggplot2 package (v 3.3.6) (21) and the pheatmap package 
(v 1.0.12) respectively. Then, the DEGs were obtained by 
taking the intersection of DEGs1 and DEGs2. Finally, DE-
PMRGs were screened out by overlapping PMRGs and 
DEGs. A PPI network had been created on the basis of DE-
PMRGs via the STRING database (medium confidence = 
0.4). Then, the visualization of the PPI network diagram 
was enabled by Cytoscape (v 3.6.1) (22).

Functional enrichment analysis of DE-PMRGs
Gene Ontology (GO), REACTOME and the Kyoto En-

cyclopedia of Genes and Genomes (KEGG) enrichment 
analyses of DE-PMRGs were executed via the g: Profiler 
online website.

Immune cell infiltration analysis
To analyze the difference in immune infiltration degree 

between SS and HC groups in the GSE89632 dataset, the 
proportion of 20 immune cell subtypes (memory B cells 
and naive CD4 T cells content was 0, so it was not involved 
in) was calculated for each sample by the CIBERSORT 
algorithm (v 1.0.3) (23) (P value < 0.05). The results of 
the analysis were presented by the proportion and violin 
diagrams.

Filtering for key module genes by WGCNA
The co-expression network was constructed by WGC-

NA (v 1.69-3) (24) on the basis of the GSE89632 data-

set. Firstly, the samples were clustered and outliers were 
removed to ensure the accuracy of the analysis. Then, the 
optimal soft threshold (β) was chosen to make the network 
approximate a scale-free distribution. In the following, the 
cluster dendrogram was gained via calculating adjacency 
and similarity. The modules were partitioned by a dynamic 
tree-cutting algorithm. Next, we evaluated the correlations 
between each module and differential immune cells and 
selected the module with |cor| > 0.5 and P values < 0.05 as 
the key module. Finally, the genes in the key module were 
identified as key module genes for follow-up analyses.

Screening biomarkers by machine learning
Firstly, common genes were screened out by overlap-

ping DE-PMRGs and key module genes. Three machine 
learning models were constructed by RF, SVM and GLM 
machine learning algorithms using the R package caret (v 
6.0.93) (25). The performance analysis of the three models 
was carried out using the DALEX package (v 2.4.2) (26). 
The residual distribution of the models was plotted, and 
the one with the smallest residual was selected as the opti-
mal model. Finally, the feature genes in the optimal model 
were selected as biomarkers for subsequent analysis.

Construction of the nomogram
The nomogram was structured and visualized on the 

basis of biomarkers by rms package (v 5.1-4). Next, a 
calibration curve was plotted to judge the model predic-
tion performance. At the same time, decision and impact 
curves were plotted to assess the predictive power of the 
model.

GSEA functional enrichment analysis
GSEA functional enrichment analysis (GO and KEGG) 

was performed on biomarkers to screen significantly en-
riched pathways according to SIZE > 20 and NOM.p.val 
< 0.05. The pathway entries in which multiple biomarkers 
were involved together were presented.

Construction of a ceRNA regulatory network 
The miRWalk database was used to predict miRNAs 

targeting biomarkers (Score = 0.95, Position = 3UTR, 
bindingp ≥ 1). Meanwhile, the miRNet database was uti-
lized for targeting miRNA prediction for biomarkers. The 
common miRNAs (co-miRNAs) were obtained by taking 
the intersection of the predicted miRNAs from the two 
databases. Next, the miRNet database and the ENCORI 
database were utilized to predict target lncRNAs targeting 
the co-miRNAs, respectively. The common lncRNAs (co-
lncRNAs) were obtained by taking the intersection of the 
predicted lncRNAs from the two databases. Lastly, using 
Cytoscape (v 3.6.1) (27), the lncRNA-miRNA-mRNA 
network was constructed based on those miRNAs and 
lncRNAs.

Construction of biomarkers-drug interaction network
The drugs targeting the biomarkers were predicted 

through the DGIDB database (https://dgidb.org). The 
results of the predictions were presented by the network 
and the Sankey diagram. Finally, the ceRNA network was 
combined with the drug prediction network to plot the ln-
cRNA-miRNA-biomarker-drug network.
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were gained, including 1393 up-regulated genes and 
1686 down-regulated genes (Figure 1a-1b). Meanwhile, 
a total of 4516 DEGs2 between the SS and HC groups 
were gained, including 2324 up-regulated genes and 2192 
down-regulated genes (Figure 1c-1d). In all, 241 common 
DEGs with the same expression trend between DEGs1 
and DEGs2 were screened and then analyzed by Venn to 
obtain 17 DE-PMRGs (SULT1E1, NR0B2, SERPINE1, 
SOD2, CXCR4, LDLR, ALOX5AP, ANXA1, LCN2, 
NNMT, CXCL8, RRM2, SAA1, SPHK1, JUN, ANXA2, 
and CYP21A2) (Figure 1e-1f). A PPI network comprising 
12 nodes and 19 edges was created (Figure 1g). Of these, 
only NR0B2 was up-regulated in expression in SS.

Functional enrichment of DE-PMRGs
The results of the enrichment analysis indicated that 

the DE-PMRGs implicated 66 GO-BP entries, 3 GO-CC 
entries, 8 GO-MF entries, 4 REACTOME and 4 KEGG 

Expression level validation
The expression of biomarkers was extracted from the 

GSE89632 and GSE126848 datasets respectively, and 
their expression was compared and plotted by the Wil-
coxon test method.

Animals
Male C57BL6 mice, aged 8 weeks, were used in this ex-

periment. For each strain, 15 mice were grouped as control 
and 15 were used as a model, raised in an animal cage with 
saw dust bedding. Conditions of the mice house are as fol-
lows: 23 ± 2°C, 55 ± 5% relative humidity, 12 h light/dark 
cycle. All mice were fed with standard chow (26% kcal 
from fat, Shoobree, Jiangsu, China) for 1 week to acclima-
tize before the experiment started. Then, the control mice 
continued to be fed a standard diet, while the experimen-
tal group was changed to a high-fat diet (HFD), bought 
from Research diets (D12451), containing 45 kcal% fat. 
After 10 weeks of feeding, all mice were put to death. 
Mice were fasted overnight before the liver was harvested 
at the end of the experiment. All animal procedures were 
performed in accordance with the Guidelines for Care and 
Use of Laboratory Animals of Harbin Medical University 
and approved by the Animal Ethics Committee of Animal 
Welfare and Ethics Committee.

Quantitative Real-time PCR
Total RNA was purified by liver tissues of normal 

mouse models (HC group) and NAFLD mouse models 
(SS group) in TRIzol reagent (Invitrogen, Carlsbad, CA, 
USA). Complementary DNA (cDNA) was obtained from 
1 µg of total RNA using a High-Capacity cDNA Reverse 
Transcription Kit (Applied Biosystems, Foster City, CA, 
USA). Gene expression was quantified using the Applied 
Biosystems 7500 real-time PCR system. SYBR-Green 
Master Mix (Applied Biosystems, Foster City, CA, USA) 
and mRNA-specific primers were used (Table 1). Relative 
gene expression was calculated using the 2−ΔΔCt formula 
standardized by the expression of housekeeping gene Actb.

Statistical analysis
All bioinformatics analyses were undertaken in R lan-

guage. At the same time, the Wilcoxon test was employed 
to contrast the data from different groups. All statistical 
tests were calculated using GraphPad Prism (5.0 version, 
La Jolla, CA, USA) more than three times. Data were ex-
pressed as mean ± SEM. The significance of single compa-
risons was performed using t-test and Normality and Lo-
gnormality Tests. P-values less than 0.05 were considered 
statistically significant.

Results

Screening of DE-PMRGs and PPI analysis
In total, 3079 DEGs1 between the SS and HC groups 

Figure 1. Differential expression analysis and PPI network. (a,b) 
The volcano map (a) and heat map (b) of DEGs between SS and HC 
samples in the GSE89632 dataset. (c,d) The volcano map (c) and heat 
map (d) of DEGs between SS and HC samples in the GSE126848 
dataset. (e) The Venn diagram of common DEGs in two datasets. (f) 
The Venn diagram of DE-PMRGs obtained by overlapping DEG and 
PMRGs. (g) The PPI network of DE-PMRGs. PPI, protein-protein in-
teraction; DEGs, differentially expressed genes; SS, simple steatosis; 
HC, health control; PMRGs, propionate metabolism-related genes; 
DE-PMRGs, differentially expressed PMRGs.

Table 1. Oligonucleotide sequence of primers used to determine the expression levels of mice genes by RT-QPCR.

Gene Forward primer (5’-3’) Reverse primer (5’-3’)
β-Actin AGCACAATGAAGATCAAGATCATTGCTCC ACTCGTCATACTCCTGCTTGCTGAT
ANXA1 TCCTCATCTTCGCAGAGTGTT GGCAAAGAAAGCTGGAGTGC
CXCR4 TGTTGCCATGGAACCGATCA TGGTGGGCAGGAAGATCCTA
LDLR ACGGAGGTGACCAACAATAGAAT TGATGGTGTCGTAGGACAAGTTAG
JUN GGCTAGAGGAAAAAGTGAAAACCT ATGACTTTCTGCTTAAGCTGTGC
NNMT CGTGCAATCAAGCAGGAACC CAGGGGAAGGCTGGAAAACT



257

Shuye Qu et al. / Biomarkers linking immune-propionate metabolism in NAFLD, 2023, 69(10): 254-263

pathways. The GO terms annotation indicated that DE-
PMRGs primarily participated in vasculature develop-
ment, inflammatory response, etc. (Figure 2a-2b). KEGG 
enrichment results included lipid and atherosclerosis, IL-
17 signaling pathways, etc. (Figure 2c-2d). In addition, 
REACTOME enrichment results included signaling by 
interleukins, cytokine signaling in the immune system, 
etc. (Figure 2c-2d).

Immune cell infiltration in SS and HC groups
The Proportion diagram indicated the proportion of 

the 20 immune cells in the SS and HC groups (Figure 3a-
3b). The highest levels in both SS and HC groups were 
in resting memory CD4 T cells, while the second highest 
levels were in Macrophages M2 and naive B cells, respec-
tively (Figure 3a-3b). In total, 8 immune cells (naive B 
cells, gamma delta T cells, Macrophages M2 and so on) 
were significantly different between the SS and HC groups 
(Figure 3c).

Identification of key module genes
To probe the genes associated with differential immune 

cells, we performed a WGCNA analysis. Sample cluste-
ring results revealed that there were two outlier samples 
(GSM2385767 and GSM2385782) (Figure 4a). Next, 
the sample clusters and phenotypic trait heatmap were 
constructed (Figure 4b). With a soft threshold equal to 6, 
R2 = 0.87 (red line), and average connectivity close to 0, 
which suggested that the interactions between genes maxi-
mally conform to a scale-free distribution (Figure 4c). A 
total of 12 modules were obtained by the dynamic tree-cut 
algorithm (Figure 4d). Of these, MEblue (naive B cells: 
Cor = -0.61, P = 2e-05; gamma delta T cells: Cor = 0.61, P 
= 2e-05; macrophages M2: Cor = 0.77, P = 3e-09; resting 
dendritic cells: Cor = 0.45, P = 0.003; activated dendri-
tic cells: Cor = -0.54, P = 2e-04; resting mast cells: Cor 
= 0.72, P = 1e-07; activated mast cells: Cor = -0.72, P = 
1e-07; Neutrophils: Cor = -0.72, P = 6e-08) showed the 
highest correlation with differential immune cells overall 
(Figure 4e). Therefore this module was considered as key 
module. Finally, the 3442 genes in this key module were 
defined as key module genes for subsequent analysis.

Figure 2. Functional enrichment analysis for DE-PMRGs. (a,b) The 
GO terms were enriched in DE-PMRGs. (c,d) The KEGG pathways 
and REACTOME pathways were enriched in DE-PMRGs. GO, Gene 
Ontology; BP, biological progress; CC, cellular component; MF, mo-
lecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes

Figure 3. Immune infiltration analysis. (a,b) The proportion of 20 
immune cells in the HC (a) and SS (b) groups. (c) Discrepancies of 
fraction of immune cells between SS and HC samples.
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Screening for biomarkers
In total, 15 common genes were screened out by over-

lapping DE-PMRGs and key module genes (Figure 5a). 
The machine learning model was constructed by three 
machine learning algorithms based on 15 common genes. 
Performance analysis of the three models showed that the 
RF model had the lowest residual and thus was conside-
red the optimal model (Figure 5b-5c). The top five genes 
from the optimal model (JUN, LDLR, CXCR4, NNMT, 
and ANXA1) were used as biomarkers for the subsequent 
analysis (Figure 5d).

Construction of the nomogram
The nomogram on the basis of 5 biomarkers was utilized 

to predict the risk of developing SS in patients (Figure 6a). 
As illustrated by the calibration curve, the precision of the 
nomogram was excellent (Figure 6b). The decision curve 
analysis further illustrated that the benefit of the nomo-
gram model was higher with the addition of biomarkers 
than with individual biomarker features (Figure 6c). In the 
influence curve, most of the predicted results (red curve) 
coincide with the actual curve (blue curve), indicating that 
the nomogram had an accurate prediction ability (Figure 
6d).

GSEA analysis of biomarkers
The functional enrichment results revealed that all bio-

markers were enriched in the nucleoside triphosphate me-
tabolic process, pyruvate metabolism, etc. (Figure 7a-7d).

The ceRNA regulatory network
Using two databases, based on the biomarkers, we pre-

dicted 962 and 58 target miRNAs, respectively. Finally, 
11 co-miRNAs were obtained by taking the intersection 
of the predicted targeting miRNAs from the two data-

Figure 4. Identification of differential immune cells-related key 
genes. (a) The samples in the GSE89632 dataset were clustered to re-
move the outlier. (b) The heat map of sample clustering and traits. (c) 
Selection of the optimal soft-thresholding (power). (d) Hierarchical 
clustering of genes and module identification. (e) Heatmap of the rela-
tionships between gene modules and differential immune cells.

Figure 5. Identification of biomarkers for SS. (a) The Venn diagram 
of common genes obtained by overlapping DE-PMRGs and differen-
tial immune cells-related key module genes. (b,c) Performance ana-
lysis of the three machine learning models. (d) The importance of 15 
common genes in the optimal model.

Figure 6. Creation of the nomogram for SS patients. (a) The nomo-
gram was established based on five biomarkers. (b) The calibration 
curve of the nomogram. (c) The decision curve of the nomogram. (d) 
The clinical influence curve of the nomogram. 

Figure 7. GSEA enrichment analysis of biomarkers. (a-c) The GO 
terms enriched in biomarkers. (d) The KEGG pathways enriched in 
biomarkers.
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bases (Figure 8a). Similarly, we acquired 149 co-lncR-
NAs (Figure 8b). The lncRNA-miRNA-mRNA network 
was constructed according to the predicted mRNA-miR-
NA and miRNA-lncRNA regulatory relationships. The 
network contained 5 biomarkers, 11 miRNAs (hsa-miR-
152-3p, hsa-miR-185-5p and so on), and 149 lncRNAs 
(BLACAT1, C1orf220, etc.) (Figure 8c). The specific 
mRNA-miRNA pairs were LDLR-hsa-miR-152-3p, etc., 
and the miRNA-lncRNA pairs were MIR29B2CHG-hsa-
let-7b-5p, etc. The Sankey diagram indicated that LDLR 
had the most relational pairs (Figure 8d).

Prediction of therapeutic agents of biomarkers
Through the DGIDB database, 5 biomarkers (JUN, 

LDLR, CXCR4, NNMT, and ANXA1) were found that 
targeted by therapeutic drugs (Figure 9a). The network 
included 44 drugs (holacanthone, sergeolide and so on) 
for JUN, 21 drugs (corticotropin, pravastatin and so on) 
for LDLR, 20 drugs (plerixafor, bkt140 and so on) for 
CXCR4, one drug (niacin) for NNMT, and 20 drugs (al-
clometasone, prednisone and so on) for ANXA1 (Figure 
9b).

Expression of biomarkers
The results of the expression analysis showed that 

the expression of biomarkers in the training set was si-
gnificantly higher in the HC group than in the SS group 
(Figure 10a). The expression trends of biomarkers in the 
GSE126848 dataset were the same as those in the training 
set (Figure 10b).

mRNA expression of five biomarkers in the samples
The results of the mRNA expression analysis showed 

that the expression of five biomarkers was significantly 
higher in the HC group than in the SS group (Figure 10c).

Discussion

Nonalcoholic fatty liver disease affects approximately 
one-quarter of the global population due to its increased 
morbidity, mortality, economic burden and health care 
costs (28). Propionate, a major product of dietary fiber 
fermentation in the colon, is thought to lower serum cho-
lesterol levels, and there has been increasing evidence for 
an important role of innate immunity in the development 
of hepatic steatosis in the last decade (29-31). Therefore 
based on the current study, we conducted a comprehen-
sive bioinformatics analysis to identify immune and pro-
pionate-related diagnostic biomarkers associated with 
NAFLD progression.

Immunological analysis showed differences in γδ-T 
cells, M2 macrophages, dendritic cells, mast cells and neu-
trophils between the disease and healthy control groups. 
Dendritic cells are the major antigen-presenting cells of the 
liver (32), dendritic cells in NAFLD patients can respond 
to lipopolysaccharide stimulation, by secreting inflam-
matory cytokines that promote disease progression (33). 
γδ-T cells bridge the innate immune system and adaptive 
immunity and are more abundant in the liver than in the 
blood, accounting for 15-25% of total hepatic T cells (34). 
In NAFLD, γδ-T cells are recruited to the liver and exa-
cerbate the progression of NAFLD by regulating CD4+ T 
cells and increasing the expression of IL-17 (35, 36). This 
is consistent with our results, in which NAFLD patients 

Figure 8. Construction of the ceRNA network for biomarkers. (a) 
The Venn diagram of common miRNAs was obtained by overlapping 
the predicted miRNAs. (b) The Venn diagram of common lncRNAs 
obtained by overlapping the predicted lncRNAs. (c) The network was 
established based on the lncRNAs, miRNAs, and mRNAs. (d) The 
Sankey diagram of interaction among lncRNAs, miRNAs, and bio-
markers. ceRNA, competing endogenous RNA; miRNA, microRNA; 
lncRNA, long non-coding RNA.

Figure 9. Drug prediction for SS. (a) The drugs targeting five bio-
markers in the DGIDB database. (b) The network of biomarkers and 
drugs.

Figure 10. The expression of biomarkers and validation between SS 
and HC groups by qRT-PCR. (a,b) The expression of five biomarkers 
in the training set (a) and GSE126848 dataset (b). (c) Validation of 
biomarkers by qRT-PCR. *P<0.05; ** P<0.01; ****P<0.0001.
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in our study did have higher levels of infiltration of res-
ting dendritic cells and γδ-T cells than the normal group. 
M2 macrophages have a weak antigen-presenting capa-
city, and they play an important role in immune regula-
tion by secreting suppressive cytokines such as IL-10 and 
transforming growth factor-β to down-regulate immune 
responses (37). Macrophage polarization switch from 
M1 to M2 phenotype may determine the regression of 
inflammation in NAFLD (38). The downregulation of M2 
macrophages in the disease group may be due to a spon-
taneous anti-inflammatory response of the organism. Mast 
cells are generally present in low numbers throughout the 
body, and it has been shown that mast cells are significant-
ly higher in stage 3-4 nonalcoholic steatohepatitis tissue 
compared to normal liver tissue, and that the number of 
mast cells correlates with the stage of liver fibrosis (39). In 
addition Lindsey Kennedy et al. found that mast cells can 
promote the development of steatosis biliary senescence 
and inflammation through the miR-144-3p/ALDH1A3 
signaling pathway during the progression of NAFLD (40). 
Neutrophils can secrete IL-8 and tumor necrotic factor 
(TNF), among which elevated TNF-α concentrations are 
thought to be significantly associated with increased risk 
of NAFLD (41). TNF-α can stimulate the production of 
C-reactive protein (CRP) in the liver by activating intra-
cellular kinases (41). A 2020 study showed an independent 
positive correlation between CRP and NAFLD, and even 
suggested that it could be used as a surrogate diagnostic 
marker for the severity of NAFLD disease (42). Similarly, 
IL-8 showed higher levels in nonalcoholic steatohepatitis. 
In our study, however, neutrophils were down-regulated in 
the disease group, which may be due to the higher levels 
of anti-inflammatory effects of the samples. Therefore, 
the role of neutrophils in NAFLD needs to be further ex-
plored. Some studies have shown that propionate can play 
a key role in regulating CD8+ T cell activation by inhibi-
ting IL-12 secretion from dendritic cells (43). In addition, 
the metabolites of propionate can affect the differentiation 
or function of T cells, macrophages and dendritic cells, 
and the abnormality of these cells can cause the occur-
rence and development of NAFLD (44,45). The changes 
in the expression of propionate-related biomarkers may 
modulate the inflammatory response in NAFLD.

We obtained five biomarkers associated with the dia-
gnosis of NAFLD through a series of analyses, and the 
expression of JUN, LDLR, CXCR4, NNMT, and ANXA1 
was significantly lower in the disease group than in the 
healthy control group, which may play a role in inhibiting 
the progression of NAFLD. Activator protein-1 (AP-1) is 
a dimeric transcription factor consisting of JUN, transcrip-
tional activator, etc. For the liver, JUN deficiency does not 
impair organ homeostasis, but AP-1 is critical for the li-
ver's response to acute stress (46-48). It has been demons-
trated that the ROS/JNK/AP-1 signaling pathway has 
been shown to play an important role in HUA-mediated 
fat accumulation in the liver (49). And expression of AP-1 
transcription factor c-Jun correlates with progression from 
NAFLD to non-alcoholic steatohepatitis in humans and 
mice (50). The effect between the two needs to be verified 
by further in vitro and in vivo experiments. The low-den-
sity lipoprotein receptor (LDLR), expressed primarily in 
the liver, helps remove approximately 70% of circulating 
LDL by endocytosing cholesterol-rich LDL (51), and it 
plays an important role in the regulation of plasma and in-

tracellular cholesterol homeostasis (52). Dysregulation of 
LDLR expression causes abnormal accumulation of lipids 
in cells and tissues such as hepatocytes, renal tubular cells 
and podocytes (52). Dysregulation of the LDLR pathway 
may be a cause of accelerated lipid disorder-mediated tar-
get organ damage and thus NAFLD (52). As seen in our 
results, LDLR expression was higher in healthy controls, 
meaning that LDLR pathway dysregulation was present 
in NAFLD samples. The c-x-c chemokine receptor type 4 
(CXCR4) is also known as a fusion protein or CD184 (53). 
Chemokines are involved in homeostatic or inflammatory 
regulation and can mediate pathophysiological changes in 
disease progression by binding to the corresponding re-
ceptors (54). The CXCL12/CXCR4 pathway is involved 
in the recruitment of CD4+ T cells in nonalcoholic stea-
tohepatitis in both mice and humans (55). It has also been 
shown that CD4+ T cells are critical in promoting hepa-
tic steatosis-fibrosis transition (35). However, it has also 
been shown that CXCL12/CXCR4 can improve fibrosis 
levels in many organs, including the heart, liver, lungs and 
kidneys (56). The effect of CXCL12 / CXCR4 on fibro-
sis has two sides, which needs to be further verified by 
experiments. Nicotinamide-N-methyltransferase (NNMT) 
is a methylating enzyme for nicotine (vitamin B3) using 
S-adenosylmethionine as the methyl donor (57). As early 
as 2018, it was found that polymorphisms in NNMT may 
be a genetic risk factor for the development of NAFLD, 
and individuals with wild-type NNMT have a lower risk 
of developing NAFLD (58). The membrane-linked protein 
A1 (ANXA1) is an important effector in the regression of 
inflammation (59), it has been shown to impair the recruit-
ment of neutrophils to sites of inflammation (60). Gadi-
pudi et al. found no effect on hepatic steatosis when trea-
ting nonalcoholic steatohepatitis with recombinant human 
ANXA1 (hr ANXA1), but it reduced liver inflammation 
and fibrosis (59). This means that NNMT and ANXA1 
favor a decreased chance of prevalence or reduced inflam-
mation in NAFLD.

Functional enrichment analysis showed that biomar-
kers were associated with AGE-RAGE signaling pathway, 
TNF signaling pathway, Toll-like receptor signaling pa-
thway, IL-17 signaling pathway and other pathways in 
diabetic complications. AGE/RAGE activation increases 
oxidative stress and triggers a series of inflammatory res-
ponses, angiogenesis and fibrosis (61). Moreover, AGE/
RAGE activation can also activate the NF-kappa B signa-
ling pathway, which is associated with inflammation and 
fatty liver during liver injury (62, 63). It has been shown 
that TNF-α reverses LDLR inhibition mediated by low-
density lipoprotein (LDL) loading and up-regulates the 
LDLR pathway, thereby increasing the uptake of natural 
LDL by human glomerular thylakoid cells (64). Then it is 
possible that it can up-regulate the LDLR pathway through 
the TNF signaling pathway and thus have an effect on NA-
FLD. Toll-like receptor 4 (TLR4) is the upstream signal of 
the Th17-IL-17 axis (65), and recent studies have shown 
that TLR4 mediates inflammation in hepatic parenchymal 
and non-parenchymal cells during the early stages of NA-
FLD and is involved in inflammatory events in liver tissue 
(66). Toll-like receptors are activated to degrade I-kappa B, 
while free NF-kappa B can enter the nucleus and promote 
the transcription of cytokines such as TNF-α. NF-kappa B 
and TNF signaling pathways are important inflammatory 
pathways in the process of cholestatic liver injury (67, 68). 
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IL-17 rises during human obesity and the IL-17 axis has 
also been associated with liver injury, and IL-17 deficiency 
has been shown to have a protective effect against hepatitis 
(69). IL-17 can also induce the release of neutrophil che-
mokines (70). From the previous discussion we can learn 
that neutrophils can release cytokines such as TNF, which 
have an effect on inflammation in NAFLD, and elevated 
TNF inevitably affects the TNF signaling pathway. There-
fore, these pathways may together play an important role 
in the development of NAFLD.

In addition, for the identified immune and propio-
nate-related biomarkers, we constructed related upstream 
regulatory networks, such as the lncRNA-miRNA-mRNA 
network, which provide directions and a basis for further 
study of the mechanism of action of these genes in NA-
FLD.

The present study has some limitations. First, our study 
was conducted on the basis of existing public database 
data, and the results obtained from the analysis need to 
be validated by additional clinical samples and clinical 
application studies. Secondly, the mechanism of action of 
the identified immune and propionate metabolism-related 
disease diagnostic biomarkers needs further experimental 
investigation.

Conclusions
In summary, this study identified five diagnostic bio-

markers of NAFLD associated with immunity and pro-
pionate metabolism, based on immune cells that differed 
between the disease group and healthy controls, as well 
as differentially expressed genes (Figure 11). We also 
analyzed the biomarker pathways, and we hypothesized 
that these biomarkers are more strongly associated with 
immune-related pathways and would affect NAFLD 
through the AGE-RAGE signaling pathway, TNF signa-
ling pathway and Toll-like receptor signaling pathway in 
diabetic complications. It provides an important reference 
for future diagnosis, mechanism research and treatment of 
the disease.
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