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Introduction

Cirrhosis is a chronic hepatic disorder characterized 
by progressive and irreversible fibrosis of the liver tissue, 
which leads to significant morbidity and mortality (1). 
This disease is marked by the accumulation of scar tissue 
in the liver, resulting in the development of nodules and 
fibrosis. Over time, this can cause liver dysfunction and 
may also elevate the risk of liver cancer (2). 

The immune system is crucial in the onset and pro-
gression of cirrhosis. In response to liver injury during the 
early stages of the disease, the immune system initiates 
inflammatory pathways, which can aid in the clearance of 

damaged cells and facilitate tissue repair (3). However, 
if the injury persists, the ongoing immune response can 
contribute to the development of fibrosis and the forma-
tion of nodules (4). The hepatic stellate cell (HSC) is a 
crucial cell type in the progression of cirrhosis (5). HSCs 
can communicate with immune cells such as Kupffer cells 
and T cells, leading to the activation of inflammatory pa-
thways. Additionally, other immune cells like natural kil-
ler cells, neutrophils, and macrophages are also involved 
in the pathogenesis of cirrhosis (6-8). These cells can ge-
nerate cytokines and chemokines that possess pro-inflam-
matory properties, which can exacerbate HSC activation 
and encourage the onset of fibrosis (9).
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Cirrhosis is a persistent hepatic ailment that emerges from a range of causes, including viral infections, alco-
holic liver disease, and non-alcoholic fatty liver disease. It is distinguished by the replacement of normal liver 
parenchyma with fibrous scar tissue, culminating in the development of hepatic insufficiency, portal hyperten-
sion, and eventual liver collapse. Several molecular and cellular mechanisms contribute to cirrhosis' pathoge-
nesis, including activation of immune cells and dysregulation of immune-related pathways. Weighted Gene 
Co-expression Network Analysis (WGCNA) is a powerful data mining application used to identify gene mo-
dules and hub genes that are closely associated with specific phenotypes or conditions of interest. In this study, 
we performed WGCNA on publicly available gene expression datasets and subsequently assessed the roles of 
immune-related genes in the etiology and progression of cirrhosis, intending to explore potential therapeutic 
targets for this disease. GSE36411 gene expression profiling was extracted from the Gene Expression Omnibus 
repository (GEO). The transcriptomic data were submitted to Weighted Gene Co-expression Network Analysis 
(WGCNA) to screen for the presence of key genes, and immune-related genes were filtered by comparison 
to the InateDB database. Cancer Genome Atlas (TCGA) was included in the study to validate the significant 
modules generated from WGCNA. The key gene interaction network was constructed using GeneMANIA and 
Metascape. Kaplan-Meier method and Spearman correlation were used to evaluate the correlation of immune-
related genes with prognosis, tumor microenvironment, and immune cell infiltration. Finally, we explored a 
possible mechanism using gene set enrichment (GSEA) analyses. In total, 2,102 differentially expressed genes 
(DEGs) were identified from the gene expression profile dataset. A weighted gene co-expression network 
analysis was performed, resulting in the classification of genes into 3 modules. Among these modules, the 
turquoise module was found to be most closely associated with cirrhosis. By comparing the turquoise module 
genes with an InateDB immune-related gene set, we identified 157 immune-associated genes. In addition, our 
study found that many hub genes are strongly associated with the number of immune-related genes in liver cir-
rhosis, in addition to a few modules associated with immune infiltration. It turns out that these hub genes were 
engaged in migration, activation, and immune cell regulation, as well as in the signaling pathways that drive 
the immune response to infection. Our research offered a deeper understanding of the underlying processes of 
immune infiltration in cirrhosis and also suggested potential treatment options for this troublesome condition. 
Our results demonstrate the effectiveness of WGCNA in uncovering new knowledge regarding the biology of 
cirrhosis and the function of the immune system in this disease. More studies ought to focus on the validation 
of the identified hub genes and the determination of their clinical relevance. These results could serve as the 
basis for the creation of more potent therapies for those with liver cancer linked to cirrhosis.
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However, liver cirrhosis has a highly variable progno-
sis, which is influenced by variables such as disease etio-
logy, severity, complications, and comorbidities. It is esti-
mated that the lifespan of a patient with advanced cirrhosis 
is reduced to one or two years.

The transcriptomics method has recently emerged as a 
powerful tool for studying complex diseases like cirrhosis. 
Large-scale gene expression datasets may be used to iden-
tify groupings or modules of co-expressed genes using 
the computational method known as weighted gene co-
expression network analysis (WGCNA) (10). It has been 
widely used in biological research for identifying new the-
rapeutic targets and biomarkers for disease diagnosis and 
prognosis (11, 12).

In the current investigation, we employed WGCNA to 
scrutinize the transcriptomic data of cirrhosis, to pinpoint 
particular modules that are closely linked to immune in-
filtration, as well as identifying their corresponding hub 
genes. Our findings shed new light on the underlying pro-
cesses of immune infiltration in cirrhosis and suggest fu-
ture therapeutic targets for this complicated illness.

Materials and Methods

Data source
Figure 1 illustrates the workflow followed in this stu-

dy. The mRNA expression profile microarray GSE36411, 
which was submitted by Wang et al. (13), was obtained 
from the GEO database. This dataset comprises mRNA 
expression profiles of human hepatocellular carcinoma 
(HCC) tissue samples from both tumor and non-tumor 
groups. The non-tumor group has two subgroups: a nor-
mal liver group (NL, n = 20) and a liver cirrhosis group 
(LC, n = 20). In this study, we utilized the NL and LC 
group of GSE36411 to construct co-expression networks 
and identify hub genes associated with cirrhosis. The data-
set was sequenced by the GPL10558 platform (Illumina 
HumanHT-12 V4.0 expression beadchip). The dataset was 
normalized by applying the quantile normalization method 
in the linear models for microarray data, followed by log2 
transformation, as indicated in the data processing infor-
mation of GSE36411.

DEGs identification and WGCNA
After identifying the differentially expressed genes 

(DEGs) using deseq2, we used the weighted gene co-ex-
pression network analysis (WGCNA) to build a gene co-
expression network. We used a gradient approach to test for 
scale independence and mean connectedness, with power 
values ranging from 1 to 20, and we were able to produce a 
scale-free network with a degree of independence greater 
than 0.80 (10). After transforming the adjacency matrix 
into a topological overlap matrix (TOM), a hierarchical 
average linkage clustering analysis was executed on the 
gene dendrogram. This approach facilitated gene cluste-
ring into distinct gene modules according to the TOM-
based dissimilarity measure.

Hub genes identification and Protein-Protein Interac-
tion network

Those genes with kME (eigengene-based connectivi-
ty) values in the top 30% of genes were considered hub 
genes for the module-trait correlation analysis. Using the 
InateDB database, we selected immune-related genes and 
analyzed their protein-protein network interactions (PPI) 
with help of the Search Tool for Retrieval Interacting 
Genes (STRING) database. Based on the ranking of PPI-
connected nodes from most to least, we selected the top 
10 hub genes belonging to immune genes as key immune 
genes.

Differential expression analysis
The dataset of 33 different types of cancer collected 

from TCGA was analyzed using the DESeq2 package 
(1.34.0) for pairwise differential expression analysis, 
which produced DEGs (or transcripts) between cancer and 
non-neoplastic control tissue. P adjusted value < 0.05 and 
log2 fold change (FC) ≥1 were chosen as the cut-off cri-
teria.

Kaplan-Meier curve
The R ‘Survival’ and ‘Survminer’ packages facilitate 

survival analysis and visualization. Cox regression ana-
lysis was conducted to identify independent risk factors 
associated with LC.

Construction of Co-Expression Network
The similarity expression patterns of differentially 

expressed genes (DEGs) of the GSE36411 microarray 
dataset were constructed using the R package ‘WGCNA’ 
(10). The WGCNA package was used to analyze all DEGs 
and determine the optimal soft thresholding power. Sub-
sequently, the DEGs were grouped into different modules 
based on their weighted co-expression network and assig-
ned color labels. The correlation between each module and 
LC or control groups was investigated. The module that 
displayed the highest correlation with LC was considered 
a key module for further enrichment analysis.

Gene Ontology and pathway enrichment analysis
KEGG pathway analysis and Gene Ontology (GO) 

analysis (which includes biological process, cellular com-
ponent, and molecular function) were both carried out in 
the major module created by WGCNA. To further visua-
lize the function and route words in the R program, the 
terms were obtained.Figure 1. An overview of the workflow used to prepare, process, and 

analyze the data.
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CCR7, FCGR2A, IL7R, SYK, CD27, SPP1, IFI16, and 
MMP7.

Hub genes interaction network and enrichment ana-
lysis

We used the "GeneMania" application to create a 
gene-gene interaction network of the 10 immune-related 
hub genes to highlight their probable biological activities 
(Figure 3A). The most highly correlated genes with other 
genes were CCL5, CXCR4, CCR7, IL7R, and CD27. The 
hub genes were mostly implicated in the inflammatory 
response, control of the defensive response, and negative 
regulation of the immune response, according to further 
functional enrichment analysis performed using the Me-
tascape program (Figure 3B).

Validation of the hub genes
To further examine the prognostic significance of hub 

genes as shared indicators, we performed Cox regression 
analysis on 33 separate cancer types from the TCGA da-
taset. 153 genes met the criteria (|HR| > 1 and p < 0.05). 
Based on gene expression levels, we categorized each can-

Tumor Immune Microenvironment and Infiltrating 
Analysis

To estimate the number of immune cells present in 
tumor samples, a method called 'Estimation of STromal 
and Immune cells in MAlignant Tumours using Expres-
sion data' (ESTIMATE1.0) was applied. To obtain a more 
precise estimation of immune cell infiltrating levels, we 
utilized the TIMER2.0 tool, which is tailored specifically 
for The Cancer Genome Atlas (TCGA) data, in our inves-
tigation. Additionally, the xCell algorithm (https://xcell.
ucsf.edu/) was employed to quantify immune cell numbers 
and analyze cell type enrichment.

GeneMANIA and signaling pathways analysis
GeneMANIA (http://www.genemania.org) is an online 

protein-protein interaction network database that provides 
a user-friendly platform to explore functional connections 
and interactions between genes. GeneMANIA was used to 
construct a core gene network to explore possible mecha-
nisms in patients with OA in this study. The genes identi-
fied in the network were subjected to gene ontology (GO) 
analysis using the Metascape tool (https://metascape.org/
gp/index.html#/main/step1 v3.5, San Diego, CA, USA).

Gene Set Enrichment Analysis
To assess the degree of enrichment of the KEGG pa-

thway in patients with LC, Gene Set Enrichment Analysis 
(GSEA4.3) was employed. The GSEA desk application's 
transcriptome data were imported strictly following the 
website's instructions. The criterion for the significant 
gene sets was taken to be P-value < 0.05 and FDR < 0.25.

Statistical analysis
To investigate the statistical significance of the diffe-

rences among groups, a nonparametric test or t-test was 
used, depending on the parameters of the data distribution. 
The program R3.5.3 was used in our study, and statistical 
significance was defined when P-value < 0.05. 

Results

WGCNA identifies hub genes from key modules
A total of 2,441 DEGs were identified for further ana-

lysis. Using the WGCNA analysis, 19 co-expression mo-
dules were constructed (Figure 2A). A correlation analysis 
between modules and traits revealed that the module in 
blue had the greatest association with clinical characteris-
tics (cor =0.57, P=6.2e-102) (Figure 2B, C). As a result, 
the blue module was chosen for further examination. We 
applied to GO and KEGG analysis to determine the likely 
biological roles that the genes in the blue module may 
play. According to biological process GO analysis, the 
blue module's genes were mostly engaged in T cell activa-
tion and cell adhesion (Figure 2D). As a result, we selected 
157 immune-related genes as immune-related hub genes 
by comparing all the DEGs in the blue module with the 
InateDB database. Furthermore, we selected the 30% of 
genes that appeared at the top of the kME rank. The higher 
the intramodular connectivity (kME) value of a gene, the 
more representative its expression within a module is. 
And String was used to create a protein-protein interac-
tion (PPI) network using these genes (Figure 2E). The 10 
genes with the highest degree of correlation were selected 
as immune-related hub genes, including CCL5, CXCR4, 

Figure 2. Identification of the key module and immune-related genes 
associated with live cirrhosis. (A) Cluster dendrogram of differentially 
expressed genes related to liver cirrhosis. (B) Heatmap of the module-
trait connection. Module eigengenes that list the modules discovered 
during the clustering study are clustered hierarchically. The column 
denotes the characteristic, whereas the row denotes the module. P-va-
lues are indicated within boxes. (C) Scatterplot of Gene significance 
versus module membership in the blue module. (D) Dot plot of GO 
analysis for all genes in the blue module of cluster dendrogram. (E) 
map of protein-protein interactions of the hub genes. The warmer the 
color, the closer the gene interacts with other genes.

Figure 3. (A) Gene-gene interaction network of hub genes. The 
degree of interactions is represented by the node size. The types of 
gene-gene interactions are represented by the inter-node connection 
lines, while the network types are represented by the line colors. (B) 
Histogram of functional enrichment analysis of key hub genes. The 
enriched terms are colored by p-value, and distinct colors indicate 
enriched pathways.
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cer type into a high-expression group and a low-expres-
sion group. The overall survival (OS) of these 153 genes 
was calculated (Figure 4). As a consequence, 119 genes 
were shown to be strongly linked with disease prognosis 
(P<0.05). Particularly, the association between the hub 
genes and overall survival status in TCGA datasets was 
shown in Figure 4. High CCL5 expression levels were cor-
related with a worse OS in thymoma (THYM). As for that, 
CXCR4 was positively related to poor OS in stomach ade-
nocarcinoma (STAD). While OS was significantly reduced 
in patients with elevated expression of CCR7, IL7R, and 
CD27 in sarcoma (SARC), lung adenocarcinoma (LUAD), 
and head and neck squamous cell carcinoma (HNSC) (P ≤ 
0.001).

Immune infiltration and tumor microenvironment 
analysis

To gain further insight into how hub genes regulate im-
mune responses in the tumor microenvironment (TME), 
we investigated TME immune backgrounds in 33 different 
cancer types in TCGA using TIMER, xCell, and ESTI-
MATE. First, we used ESTIMATE to provide informa-
tion on the amount of stromal and immune cells in gene 
expression tumor samples (14). A Spearman correlation 
study was run across hub genes and ESTIMATEScore, 
ImmuneScore, as well as StromalScore. Our results revea-
led a significant correlation between selected genes and 
ESTIMATE parameters with P values <0.05. Additionally, 
to provide a more robust estimation of immune infiltration 
levels, we used TIMER and applied xCell algorithms for 
immune cell quantification and cell type enrichment ana-
lysis (15, 16). CCL5 was found to be strongly associated 
with CD8+T cells in STAD (R-value = 0.82, P = 2.2e-16), 
bile duct cancer (CHOL (R-value = 0.79, P = 4.19E-07), 
and cervical squamous cell carcinoma (CSC) and endo-
cervical adenocarcinoma (CESC) (R-value = 0.77, P < 
2.2e-16). CXCR4 expression was strongly associated with 
CD4 + T cells and dendritic cells in THYM (R-value = 
0.85, P < 2.2e-16; Rvalue = 0.84, P < 2.2e-16) and CHOL 
(R-value = 0.78, p = 4.14E-07; R-value = 0.84, P = 2.49E-
07). Macrophages (R-value = 0.77, P = 5.78E-07) and B 
cells (R-value = 0.76, P = 8.09E-07) were also strongly 
correlated in CHOL. Breast cancer cell line CCR7 was 
significantly associated with a wide range of cells such as 
B cells, CD4+T cells, CD8+T cells, and neutrophils. (R-
value = 0.51, P < 2.2e-16; R-value = 0.72, P < 2.2e-16; 
R-value = 0.55, P < 2.2e-16; R-value = 0.67, P < 2.2e-16) 
and CESC (R-value = 0.62, P < 2.2e-16; R-value = 0.59, 
P < 2.2e-16; R-value = 0.51, P < 2.2e-16; R-value = 0.60, 
P < 2.2e-16). Strong correlation was found between IL7R 
and dendritic cells in thyroid carcinoma (THCA) (R-va-
lue = 0.85, P < 2.2e-16) and CHOL (R-value = 0.85, P = 
7.74E-08), as well as with CD4+T cells in CHOL (R-va-
lue = 0.82, P = 1.88E-07) and THYM (R-value = 0.81, P 
< 2.2e-16). CD27 was highly relevant to CD8+T cells in 
head and neck squamous cell carcinoma (HNSC) (R-value 
= 0.77, P < 2.2e-16), CHOL (R-value = 0.76, P =6.75E-
07), adrenocortical carcinoma (ACC) (R-value = 0.75, P 
< 2.2e-16), kidney renal clear cell carcinoma (KIRC) (R-
value = 0.67, P < 2.2e-16), and ovarian serous cystadeno-
carcinoma (OV) (R-value = 0.66, P < 2.2e-16). The results 
showed that hub genes were significantly associated with 
the tumor microenvironment (TIM) and immune cells.

Immune checkpoint analysis
Immune cell infiltration in tumors is directly associa-

ted with clinical outcomes, leading to the development of 
multiple treatment modalities such as chemotherapy and 
immunotherapy. In this study, we performed a Spearman 
correlation analysis to assess the association between hub 
genes and the levels of expression of essential immunolo-
gical checkpoints such as cytotoxic T-lymphocyte-associa-
ted antigen 4, programmed cell death protein 1, and hepa-
titis A virus cellular receptor 2. (HAVCR2). Our goal was 
to investigate the role of immune checkpoints in cancer. 
We analyzed TCGA cancer types and considered signifi-
cant associations when the P value was less than 0.05. hub 
genes were significantly correlated with immune check-
points in all cancer types analyzed. Notably, CCL5 was 
significantly positively correlated with PD-1 in testicular 

Figure 4. The correlation between the identified hub genes and the 
survival status of patients was evaluated using TCGA datasets. (A) 
A Kaplan-Meier curve for CCL5 overexpressed and underexpressed 
groups in THYM. (B) A Kaplan-Meier survival curve for CXCR4 
highly and lowly expressed groups in STAD. (C) Survival curve 
for CCR7 high and low abundance groups in SARC. (D) Survival 
analysis for IL7R high and low transcript groups in LUAD. (E) A 
Kaplan-Meier analysis for low and high CD27 expression groups in 
HNSC. THYM, thymoma; STAD, stomach adenocarcinoma; SARC, 
sarcoma; LUAD, lung adenocarcinoma; HNSC, head, and neck squa-
mous cell carcinoma.

Figure 5. The association between hub gene expression and infiltra-
tion levels in various cancer types was analyzed by the correlation 
module of the TIMER database. STAD, stomach adenocarcinoma; 
CHOL, cholangiocarcinoma; CESC, cervical squamous cell carci-
noma, and endocervical adenocarcinoma; THYM, thymoma; BRCA, 
breast invasive carcinoma; THCA, thyroid carcinoma; HNSC, head, 
and neck squamous cell carcinoma; ACC, adrenocortical carcinoma; 
KIRC, kidney renal clear cell carcinoma; OV, ovarian serous cysta-
denocarcinoma. TIMER, Tumor IMmune Estimation Resource data-
base.
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germ cell tumors (TGCT) (R-value = 0.93, P < 2.2-e-16) 
and CXCR4 was significantly positively correlated with 
CTLA4 in pancreatic cancer (PADD) (R-value = 0.77, P 
< 2.2-e-16), as shown in Figure 6. In thyroid carcinoma 
(THCA ((R-value 0.88, P < 2.2e-16), CCR7 was highly 
positive correlation values with CTLA4 expression levels 
(KICH) (R-value = 0.88, P < 2.2e-16). Furthermore, there 
was a significant positive correlation between CD27 and 
PDCD1 expression levels in skin cutaneous melanoma 
(SKCM) (R-value = 0.93, P < 2.2e-16).

Gene set enrichment analysis
To understand more about the biological signaling 

pathways of the hub genes, we ran Gene Set Enrichment 
Analysis (GSEA) was employed to investigate the likely 
pathway enrichment of hub gene expression. Figure 7 dis-
plays the top three significantly enriched routes. Signifi-
cant correlations between high levels of CCL5 expression 
and interferon-gamma response, allograft rejection, and 
Kras signaling were found using the HALLMARK collec-
tion enrichment analysis. Apical junction, allograft rejec-
tion, and apoptosis were discovered to be the three main 
functions of CXCR4, whereas allograft rejection, interfe-
ron alpha response, and inflammatory response were re-
vealed to be the three main functions of CCR7. In contrast 
to CD27, which was discovered to be involved in apical 
surface, apical junction, and IL2-STAT5 signaling, high 
levels of IL7R expression were linked to interferon-gam-
ma response, allograft rejection, and angiogenesis. These 
findings together shed light on the potential functions of 
the hub genes in the onset and spread of cancer.

Discussion

Cirrhosis-related liver cancer is a complex disease that 
involves the interplay of various factors, including im-
mune system dysregulation and TME. The liver is a key 
location of immune cell activity, and immune cells that are 
resident there, such as Kupffer cells, as well as immune 
cells that have invaded there, like T cells, play important 

roles in the body's response to liver damage. Innate and 
adaptive immune cells are both activated in the immu-
nological response to liver damage, producing cytokines 
and chemokines that can increase liver inflammation and 
fibrosis.

In this work, using gene expression data from liver spe-
cimens with and without cirrhosis, immune-related genes 
were explored for their role in immune initiation and pro-
gression of cirrhosis by WGCNA. Using a novel approach, 
we clustered all 2,441 DEGs obtained by the 'limma' al-
gorithm into 19 modules. Subsequently, we identified the 
blue module as having the strongest association with LC 
(cor = 0.57, P = 6.2e-102). Further, the DEGs intersec-
ted with the InateDB database to identify immune-related 
genes. Utilizing the GO enrichment analysis, it was esta-
blished that the aforementioned genes were predominantly 
enriched in pathways concerning the activation of T cells 
and the adhesion of cells. PPI analysis elucidated the inte-
raction between selected genes. There were five genes lo-
cated in the core, including CCL5, CXCR4, CCR7, IL7R, 
and CD27, displaying the greatest correlations with other 
genes selected as immune-related key hub genes for fur-
ther analysis. 

Hematological and solid cancers both exhibit abnor-
mal CCL5 and CCR5 expression and activity (17). Our 
findings indicate a strong association between CCL5 and 
CD8+T cells as well as PDCD-1. Previous studies have re-
ported that CCL5-deficiency can lead to the upregulation 
of PDCD-1 and PDCD-L1 expression, reducing resistance 
to anti-PDCD-1 antibody therapy in a CRC mouse mo-
del (18), suggesting a potential therapeutic strategy with 
checkpoint inhibitors in LC.

CXCR4 is highly expressed in over 23 types of human 
cancers (19-24). The overexpression of CXCR4 contri-
butes to tumor growth, invasion, angiogenesis, metasta-
sis, relapse, and therapeutic resistance (25-27). Our stu-
dy found that CXCR4 is closely related to CD4+T cells, 
dendritic cells, macrophages, and B cells, indicating its 
potential to recruit various immune cells into the tumor 
and contribute to therapeutic resistance. Additionally, our 
study demonstrated a correlation between CXCR4 and 
CTLA-4. 

Chemokines, which are tiny heparin-binding proteins, 

Figure 6. Spearman correlation analysis of immune checkpoint with 
CCL5, CXCR4, CCR7, IL7R, and CD27. (A) the correlation of CCL5 
with PDCD1 in TGCT, (B) the correlation of CXCR4 with CTLA4 
in PADD, (C) the correlation of CCR7 with CTLA4 in THCA, (D) 
the correlation of IL7R with CTLA4 in KICH and (E) the correla-
tion of CD27 with PDCD1 in SKCM. TGCT, testicular germ cell tu-
mors; PADD, pancreatic adenocarcinoma; THCA, thyroid carcinoma; 
KICH, kidney chromophobe; SKCM, skin cutaneous melanoma.

Figure 6. GSEA for clinical samples with low and high hub gene 
expression. Gene set enrichment is shown to be at the top of the ran-
ked list when the enrichment score (ES) is positive and at the bottom 
of the list when the ES is negative. The results show that pathways 
of HALLMARK collection including oxidative phosphorylation, myc 
target, peroxisome, bile acid metabolism, fatty acid metabolism, and 
adipogenesis, are enriched in high CCL5, CXCR4, CCR7, IL7R, and 
CD27 expression groups.
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are essential for controlling how cells migrate throughout 
the body. Based on our investigation, C-C Chemokine 
Receptor 7 (CCR7) is closely associated with various im-
mune cells, as revealed by the interconnectivity analysis of 
immune cells and their subsets (28-31). By activating cru-
cial chemokine receptors including CCR5 and CCR7 and 
boosting sensitivity to chemokines, CTLA-4 can affect T 
cell motility (32). Also, according to our results, CTLA-4 
and CCR7 are highly correlated in LC.

It has been elucidated that IL7R is intricately linked to 
tumor infiltration within the surrounding environment of 
lung adenocarcinoma tumors (33). In this research, we hy-
pothesize that IL7R significantly affects the growth of LC 
via controlling dendritic cell and CD4+ T cell infiltration.

CD27 plays a critical role as a costimulatory T-cell re-
ceptor in facilitating optimal T-cell priming and memory 
differentiation. It has potential applications in antitumor 
therapy by activating cytotoxic CD8+ T cells (34). Our 
study revealed a close association between CD27 and 
PDCD-1 in LC.

The tumor microenvironment (TME) regulates tumor 
development and growth through a complex interplay 
involving immune and non-immune cells, extracellular 
matrix, and signaling molecules. To explore the poten-
tial mechanisms of core genes in disease development, 
we examined the relationship between key hub genes and 
immune infiltration. We obtained expression data from 
TCGA for 33 cancer types, which were used to derive 
immune cell and immune composite scores through mi-
croenvironmental analysis using TIMER, xCell, and ES-
TIMATE software.

Immune evasion in tumors can be facilitated by dysre-
gulation of immune checkpoints, which act as master 
regulators within the TME. Immune checkpoint proteins 
significantly influence cancer immunotherapy and inflam-
matory responses (35). Inhibition of immune checkpoints 
can decrease the expression of ligands by cancer cells, re-
verse the exhaustion state of effector T cells, and enhance 
anticancer efficacy. Identifying specific immune-related 
genes and pathways involved in cirrhosis may provide 
novel therapeutic options for its treatment.

Liver cirrhosis is a multifaceted disease that arises 
from the interplay of several factors, including dysregula-
ted immune responses, the tumor microenvironment, and 
immune checkpoint mechanisms. By using weighted gene 
co-expression network analysis, numerous immune-rela-
ted genes that contribute to the development and progres-
sion of cirrhosis have been identified. Immune checkpoint 
inhibitors are a treatment option that is currently being 
researched for this illness. However, additional research 
is necessary to determine optimal treatment strategies for 
individuals with cirrhosis-related liver cancer.
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