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Introduction

Bone is a composite and dynamic tissue that com-
prises minerals and organic material. Bone remodels 
continuously throughout life, and this remodeling process 
relies on the interaction and coordination of multiple cells, 
including osteocytes, osteoclasts, osteoblasts, vascular 
endothelial cells, and immune cells (1). In particular, the 
osteoblast–osteoclast balance assists in maintaining bone 
homeostasis (2). Osteoclasts originate from hematopoie-
tic stem cells (HSCs), and osteoclast progenitors are re-
cruited to the damaged bone surface by chemokines. Sub-
sequently, osteoclast progenitors further differentiate from 
matured osteoclasts and resorb damaged bone under the 
function of macrophage colony-stimulating factor (M-
CSF), monocyte chemoattractant protein-1 (MCP-1), and 
receptor activator of nuclear factor-κb ligand (RANKL) 
(3,4). Osteoblasts arise from multipotent mesenchymal 
precursors. Mature osteoblasts produce a new bone matrix 
that is mineralized and replaces the resorbed bone matrix, 
and this is how bone formation is completed (5). However, 
dysregulation of the dynamic equilibrium between bone 
formation and bone resorption results in various bone 
diseases, which are primarily attributed to the disruption 
of bone homeostasis. In recent years, bone diseases, such 
as osteoporosis, femoral head necrosis, bone defect, and 
bone nonunion, have become a major worldwide medical 

burden (6). Traditional bone disease treatments have poor 
clinical efficacy due to the limited bone tissue self-renewal 
(7). Therefore, bone grafts with embedded osteogenic 
growth factors are considered the “gold standard” clinical 
treatment for bone repair (8). However, its applicability 
and therapeutic effect are limited by high production costs 
and potential adverse effects (9). Currently, more and more 
studies have focused on natural products for bone repair. 
The use of traditional Chinese medicines (TCMs) has at-
tracted great interest because of their widespread availabi-
lity, cost-effectiveness, strong biological activity, and low 
toxicity (10). NG, the main active ingredient of the TCM 
Rhizoma Drynaria, also known as Gu-Sui-Bu, has been 
used in TCM formulas to cure bone diseases and promote 
osteogenesis differentiation of stem cells (11). Although 
numerous studies have demonstrated that NG has great 
potential in the treatment of orthopedic diseases (12,13), 
the underlying mechanism remains unclear. This article 
shows the basic properties of NG, summarizes the direct 
or indirect bone-protective effect of NG in maintaining 
bone homeostasis (Table 1), and itemizes its mechanism.

Basic properties of NG
NG is abundantly present in the peel and pulp of citrus 

fruits. It has a specific chemical composition (C27H32O14, 
molecular weight: 580.55, Figure 1) and exists as a dihy-
droflavone compound (14). traditional isolation methods 

Direct or indirect action mechanisms of Naringin in maintaining bone homeostasis

Xianghu Zhao1,6#, Jing Hu2#, Jie Liu3, Yi Meng1, Xiangzhong Liu4, Haijia Xu4, Yu Ning5, Zhanghua Li4*

1 Wuhan Sports University, Wuhan 430079, China
2 Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science &Technology, Wuhan 430015, China

3 Shishou People’s Hospital, Shishou 434499, China
4 Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430074, China

5 Xiangyang Hospital of Traditional Chinese Medicine, Xiangyang 441001, China
6 Department of Rehabilitation, Zhongda Hospital, Southeast University, Nanjing 210009, China

# Co-first authors, these authors contributed equally to this work.

ARTICLE INFO ABSTRACT

Keywords:

Naringin, flavonoid, bone di-
seases, bone homeostasis

Review

Article history:
Received: March 09, 2023
Accepted: June 12, 2023
Published: June 30, 2023

* Corresponding author. Email: lizhanghua_123@163.com
  Cellular and Molecular Biology, 2023, 69(6): 151-159

Disruption of bone homeostasis is the pathological basis of bone diseases. Multiple cells work together to 
maintain homeostasis and bone health. As a natural flavonoid compound, Naringin (NG) can positively affect 
the maintenance of bone homeostasis by acting on different types of cells. In this review, we discuss the direct 
and indirect osteoprotective effects of NG as well as the underlying mechanisms, and we provide a critical 
perspective on its clinical translation.

Doi: http://dx.doi.org/10.14715/cmb/2023.69.6.23                               Copyright: © 2023 by the C.M.B. Association. All rights reserved.

Cellular and Molecular Biology
E-ISSN : 1165-158X / P-ISSN : 0145-5680

www.cellmolbiol.org 



152

Xianghu Zhao et al. / Naringin maintaining bone homeostasis, 2023, 69(6): 151-159

for NG include organic solvent extraction, water boiling 
extraction, and alkali combined acid extraction. In recent 
years, ultrasonic extraction and microwave extraction have 
been reported to improve the extraction rate of NG with 
reduced costs and without causing pollution concerns (15-
18). In cell experiments, NG, a colorless needle-like crys-
talline powder, is usually dissolved in dimethyl sulfoxide 
at a concentration not exceeding 0.1% (19). Studies have 
shown that its biological activities help lower blood lipid 
levels, regulate blood sugar, and relieve pain; furthermore, 
it possesses anti-oxidation, bacteriostasis, and spasmoly-
sis properties (20). NG nourishes the kidney and benefits 
Yang in TCM (21). More importantly, NG, as one of the 
main ingredients of Rhizoma Drynaria (a famous Chinese 
herb for bone injury), also plays an important role in the 
treatment of bone diseases (22). Many kinds of drugs have 
been successfully applied for the clinical treatment of bone 
injuries, such as bone healing capsules and bone hyperpla-
sia tablets, and NG is often the main active ingredient in 
these drugs (23). The significance of NG in repairing bone 
defects has predominantly been studied in animal and in 
vitro models (24,25); however, its potential mechanism 
and signal pathway are unclear.

Direct bone-protective effect of NG

Estrogen-like effects of NG promote bone formation
The bone-protective effect of NG may be attributed 

to its estrogen-like properties (26). Characteristically, 
estrogen decline in menopausal women is implicated in 
inducing osteoporosis (27). After NG treatment, the bone 
mineral density (BMD), bone volume relative to total tis-
sue volume (BV/TV), and trabecular thickness (Tb. Th) 
were significantly increased in the ovariectomized (OVX) 
osteoporotic rat model (28). NG has also been demonstra-
ted to inhibit bone loss and promote bone formation in the 
OVX osteoporotic mice model and the retinoic acid-in-

duced osteoporosis rat model; its activity may be mediated 
through the activation of estrogen receptors (ER) in osteo-
blasts (29,30). Wu et al. found that NG induced ALP gene 
expression and osteoblast mineralization by enhancing the 
estrogen receptor alpha (ERα) transactivation activity and 
improving its translocation to the nuclei. However, these 
NG-induced effects were attenuated by methylpiperidino-
pyrazole (MPP), a specific inhibitor of Erα (31). 

NG regulates the key osteogenic factor BMP-2
NG could be a good natural BMP regulator. BMP is a 

multifunctional growth factor that can regulate the expres-
sion of osteogenesis-related genes, such as Runx2, OCN, 
collagen Ⅰ (Col Ⅰ), and ALP. BMP-2 is among the most 
important signaling molecules in maintaining the sustai-
ned phenotype of mature osteoblasts (32,33).

Xu et al. demonstrated that the proliferation and diffe-
rentiation of osteoblasts, Runx2 and OCN expression, and 
ALP activity were significantly higher when stimulated by 
100μM NG combined with BMP-2 than when stimulated 
by NG or BMP-2 alone (34). BMP-2 seems to be a target 
protein for NG. Wu et al. reported that NG not only stimu-
lates osteoblast proliferation, differentiation, and matura-
tion but also upregulates BMP-2 expression in cultured os-

Target cells Effects

Osteoblasts

• Increases osteoblasts proliferation by activating estrogen receptors
• Increases Runx2, OCN, and ALP expression 
• Increases BMP-2 expression 
• Increases osteoblast autophagy 
• Increases osteoblast activity by blocking the oxidative stress
• Decreases osteoblast apoptosis

Osteoclasts • Promotes mitochondria-mediated apoptosis of osteoclasts 
• Reduces osteoclast differentiation 

Vascular endothelial cells
• Stimulates angiogenesis and chemotaxis migration 
• Enhances neovascularization 
• Inhibits apoptosis

Mesenchymal stem cells

• Regulates the affinity between BMP and the receptor 
• Promotes proliferation 
• Enhances osteogenic differentiation 
• Enhances the migration ability 
• Stimulates chemokine synthesis and secretion
• Facilitates antioxidation
• Decreases inflammation-associated impairment

Runx2: Runt-related transcription factor 2; OCN: Osteocalcin; ALP: Alkaline phosphatase; BMP-2: Bone morphogenetic 
protein 2.

Table 1. Effects of NG on multiple cells in the skeletal system.

Figure 1. Chemical structure of NG (14).
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mediated by the PI3K/Akt signaling pathway, thus resul-
ting in EPCs which can replenish the injured endothelium 
and enhance neovascularization (51).

NG effectively inhibits bone resorption
NG stimulates osteoclast apoptosis and inhibits osteo-

clast resorption. Li et al. indicated that NG promotes the 
mitochondria-mediated apoptosis of osteoclasts. Specifi-
cally, NG can downregulate the expression of anti-apop-
totic factors B-cell lymphoma-2 (BCL-2) and upregulate 
pro-apoptotic factors Bcl-2 associated X protein (BAX), 
thereby increasing the permeability of the mitochondrial 
membrane, and initiating the caspase-dependent apoptosis 
of osteoclasts (52). Notably, RANKL and osteoprotegerin 
(OPG) are important factors of osteoclast differentiation 
and maturation, and the balance of OPG and RANKL 
controls bone metabolic homeostasis. The inhibition of 
osteoclast resorption by NG may be associated with the 
RANKL/RANK/ OPG system (53,54). Xu et al. showed 
that NG could make osteoblasts secrete OPG by synergis-
tically enhancing the metabolism of 1,25-dihydroxy vita-
min D3, thereby reducing the number of osteoclasts and 
preventing bone loss (55). Yang et al. found that NG could 
enhance the mRNA and protein levels of OPG in fibro-
blasts by stimulating the Wnt/β-catenin signaling pathway 
but had no significant effects on RANKL expression and 
secretion (56), suggesting that NG alters the OPG/RAN-
KL ratio to inhibit osteoclast resorption.

Taken together, NG promotes bone formation by exer-
ting estrogen-like effects, regulating the BMP-2 status, 
and inhibiting oxidative stress. Furthermore, NG promotes 
osteoblast autophagy, enhances angiogenesis, and inhibits 
osteoclast resorption, indicating its potential as a natural 
drug to maintain bone homeostasis (Figure 2).

Indirect bone-protective effect of NG

Mechanisms involved in NG-mediated stem cells prolife-
ration and osteogenesis

The ability of NG to exert beneficial effects on bone 
health is highly related to its pro-osteogenic effects on os-
teoprogenitor cells and stem cells. Studies have shown that 
mesenchymal stem cells (MSCs) induced by NG exhibit 
osteoblastic properties of enrichment of ALP, synthesis of 
Col Ⅰ and osteopontin (OPN), and formation of the calci-
fied nodule and NG can also promote the secretion of BMP 
(57). Moreover, different types of BMP receptors (BMPR-
1A and BMPR-1B) regulate the ultimate differentiation of 
MSCs by conducting different signals (58). NG induces 
osteogenic differentiation of MSCs by regulating the af-

teoblasts via phosphatidylinositol 3-kinase (PI3K), protein 
kinase B (Akt), and c-Fos/c-Jun and activator protein-1 
(AP-1)-dependent signaling pathways (35).

The anti-inflammatory and antioxidant activity of NG 
prevents bone loss

The maintenance of normal bone structure and function 
depends on the dynamic balance between bone formation 
and resorption, which can be disrupted by external factors, 
such as glucocorticoids (GCs) (36-38). GCs are a well-
known risk factor for iatrogenic osteoporosis (39). They 
reduce bone formation by inhibiting osteoblast function 
and increasing the apoptosis of mature osteocytes, and 
moreover, they stimulate bone resorption to some extent 
(40). 

Huang et al. discovered that NG significantly protected 
against steroid-induced avascular necrosis of the femoral 
head (SANFH). Furthermore, they found that NG signifi-
cantly increased mRNA levels of osteogenic genes by regu-
lating peroxisome proliferator-activated receptor (PPAR)
γ, neurogenic locus notch homolog protein (Notch), and 
phosphorylated-Akt (p-Akt) protein expression while 
inhibiting caspase-3 activity in the SANFH rabbit model 
(41). Similarly, Kuang et al. demonstrated that apoptotic 
proteins, such as caspase-3 and Bad, were inhibited by 
NG, and in the meanwhile, the effect of NG on the rescue 
of osteocyte apoptosis was mediated by p-Akt. They spe-
culated that the Akt/Bad signaling pathway was a key tar-
get in NG-related function using bioinformatics analysis 
(42). Moreover, Ge et al. found that not only proliferation 
and differentiation but also autophagy of osteoblasts was 
promoted by NG. The expression of autophagosome and 
its related factors in glucocorticoid-induced osteoporosis 
(GIOP) rat tissues was increased after NG treatment, and 
NG treatment partially reversed the suppressive effects of 
PI3K/Akt/mTOR pathway inhibitor on autophagy (43). 
Notably, GCs-induced bone loss is also related to oxida-
tive stress. Li et al. observed that the level of oxidative 
stress was increased in inflammatory bowel disease (IBD) 
rats treated with dexamethasone (DEX), leading to the 
inhibition of proliferation, differentiation, and activity of 
osteoblasts. However, the oxidative stress was reduced in 
NG-treated rats (44). Rivoria et al. concluded that NG pre-
vented bone loss in patients with type 1 diabetes mellitus, 
at least partially, by blocking oxidative stress (45).

NG promotes angiogenesis
Adequate blood supply is an important factor in the 

process of bone regeneration (46,47). NG could stimu-
late the angiogenesis and chemotaxis migration of human 
umbilical vascular endothelial cells (HUVECs) through 
increased matrix metalloproteinase (MMP)-2 activity 
and augmentation of vascular endothelial growth factor 
(VEGF) ligand/receptor interaction (48), and NG affects 
promoting bone mass and treating osteoporosis by in-
creasing the amounts of VEGF and vascular endothelial 
growth factor receptor (VEGFR)-2 (49). Shangguan et al. 
showed that NG inhibits apoptosis in vascular endothelial 
cells via mitochondrial- and ER stress-mediated apoptotic 
pathways and promotes angiogenesis, thereby exhibiting 
an anti-osteoporotic effect (50). Moreover, NG could pro-
mote endothelial progenitor cell (EPC) proliferation acti-
vity via the C-X-C motif chemokine ligand 12 (CXCL12)/ 
C-X-C chemokine receptor type 4 (CXCR4) axis, which is 

Figure 2. Signaling pathways involved in osteoclast, osteoblast, and 
angiogenesis of NG (29,30,34,35,41-43,48,49,51-54).
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finity between BMP and its receptor. Dong et al. found 
that NG could block BMPR-1A signaling by inhibiting the 
binding of BMP-2 and BMPR-1A, thus enhancing BMPR-
1B signaling, consequently resulting in osteogenesis (59). 
Runx2 is an important target gene in the BMP signaling 
pathway of osteogenic differentiation of MSCs (60-62). 
Liu et al. found that NG may promote the osteogenic dif-
ferentiation of human amniotic fluid-derived stem cells 
(hAFSCs) through both BMP and Wnt/β-catenin signal 
transduction pathways and that Runx2 behaves as a cross-
talking regulator between the BMP and Wnt/β-catenin 
signaling pathways (63). NG is widely recognized as an 
antioxidant agent and shows promising antioxidative func-
tion and anti-inflammatory activity in many studies in vi-
tro and in vivo (64-66). Wang et al. demonstrated that NG 
increases the viability of human adipose-derived mesen-
chymal stem cells (hADMSCs) and protects hADMSCs 
from oxidative stress-induced inhibition of osteogenic dif-
ferentiation via Wnt signaling. NG can upregulate the Wnt 
signaling pathway by increasing β-catenin and cyclin D1 
protein and therefore reverse the negative effects of H2O2 
on the Wnt signaling pathway in hADMSCs (67).  Li et al. 
found that NG enhances mitochondrial homeostasis and 
prevents the apoptosis of nucleus pulposus-derived me-
senchymal stem cells (NPMSCs) in vitro by activating the 
PI3K/Akt pathway to facilitate antioxidation (68). A study 
using a specific NF-κb inhibitor (BAY 11-7082) indicated 
that NF-κb inhibition rescued the impaired differentiation 
of MSCs in the inflammatory microenvironment (69). 
Similarly, Cao et al. suggested that tumor necrosis factor 
(TNF-α) activates the NF-κb signaling pathway, which is 
known to inhibit osteogenesis. NG prevented NF-κb signa-
ling activation by inhibiting the phosphorylation of IκBα 
and nuclear translocation of p65 kinase (p65), indicating 
that NG potentially relieves the inflammation-associated 
impairment of MSC osteogenic differentiation (70). 

The mitogen-activated protein kinase (MAPK), main-
ly p38 kinase(p38), extracellular signal-regulated kinase 
(ERK)1/2, and Jun amino-terminal kinases (JNK), signa-
ling pathway regulates various physiological processes of 
cells, such as growth, proliferation, differentiation, and 
apoptosis (71); it is closely associated with osteogenic dif-
ferentiation of MSCs (72-74). NG enhanced the osteogenic 
differentiation of MSCs by activating the ERK signaling 
pathway. Wang et al. found that NG significantly activated 
the phosphorylation of ERK1/2 and upregulated the ex-
pression of osteogenesis-related proteins, such as Runx2, 
in a dose-dependent manner in MSCs; however, the NG-
induced relatively higher levels of Runx2 were reversed 
when ERK1/2 signaling pathway was blocked (75). Wei et 
al. investigated the role of the MAPK signaling pathway 
in the osteogenic differentiation of periodontal ligament 
stem cells (PDLSCs) induced by NG. The results showed 
that NG significantly increased the osteogenic markers 
and promoted the phosphorylation of ERK1/2 but did not 
affect the phosphorylation of P38 and JNK (76). Although 
studies have shown that different members of the MAPK 
family have different effects on osteogenesis (77-79), the 
MAPK signaling pathway is at least partially involved in 
NG-induced osteogenic differentiation of stem cells, and 
Runx2 is among the most important transcription factors 
during this process. NG-potentiated osteogenic differen-
tiation of stem cells is related to the enhanced Notch signa-
ling pathway. Yu et al. reported that although NG marked-

ly increased the biological effects and osteogenesis-related 
genes of BMSCs, it inhibited PPARγ2 expression. Notch1 
protein was activated under osteogenic induction, which 
was further enhanced by NG. Conversely, treatment with 
the DAPT (a Notch signaling inhibitor) caused a partial de-
crease in the NG-induced expression level of Notch1(80). 
Consistent with these findings, Fan et al. found that miR-
20a has a regulatory effect on PPARγ in BMSCs and that 
NG can promote BMSC differentiation into osteoblasts 
via the upregulation of miR-20a and the downregulation 
of PPARγ (81). In addition, Wang et al. reported that NG 
promotes BMSC osteogenic proliferation and differentia-
tion by inactivating Janus kinase 2/ signal transducer and 
activator of transcription 3 (JAK2/STAT3) signaling (82).

NG promotes stem cell migration
Although the effects of NG on MSCs are mostly fo-

cused on promoting proliferation and differentiation, the 
migration of endogenous or exogenous MSCs to target 
tissue is also essential (83). Guo et al. reported that NG 
promotes the migration and proliferation of human dental 
pulp stem cells (hDPSCs) by activating the Wnt/β-catenin 
signaling pathway (84). Lin et al. found that an appropriate 
concentration of NG not only enhances MSC migration di-
rectly but also further enhances MSC mobility by stimula-
ting chemokine synthesis and secretion. Ras was markedly 
activated in the NG-treated groups, but MSC migration 
was significantly decreased upon treatment with a Ras in-
hibitor, suggesting that NG enhances the migration ability 
of MSCs by activating the Ras signaling pathway (85). 

In summary, NG promotes proliferation and osteoge-
nesis in stem cells by multiple signaling pathways, inclu-
ding the BMP/Runx2, Wnt/β-catenin, PIK3/Akt, NF-κb, 
MAPK/ERK/P38, Notch, and JAK2/STAT3 pathways. 
Furthermore, NG also promotes MSC migration via the 
Ras pathway (Figure 3).

Prospects 
Various risk factors lead to the disruption of bone tissue 

homeostasis, which is often reflected in insufficient bone 
formation and increased bone resorption. NG protects 
osteocytes, promotes the proliferation and differentiation 
of osteoblasts, stimulates the apoptosis of osteoclasts, and 
thus directly maintains bone tissue homeostasis; further-
more, it also indirectly repairs bone damage by inducing 
osteogenic phenotypic differentiation of stem cells and 
promoting angiogenesis. These processes involve dif-
ferent mechanisms of action and signaling pathways, but 
the specific upstream and downstream relationships and 

Figure 3. Signaling pathways involved in NG-mediated 
MSC proliferation, migration, osteogenesis, and angiogene-
sis(59,63,68,70,75,76,80-85).
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the existence of interactions among NG-mediated multiple 
signaling pathways have not been clarified. Although stu-
dies have reported no significant cytotoxicity or systemic 
or local toxicity of NG (31,86,87), it is still important to 
specify a safe and effective dose and mode of adminis-
tration. In vitro studies, NG has a dose-dependent (1–100 
µg/mL) on the proliferative and osteogenic activity of 
MSCs (53,67), while others reported that a dose of 100 
µg/mL was effective in decreasing MSC proliferation 
(88). Besides, the intervention concentrations of NG dif-
fered greatly between the two studies wherein NG inhi-
bited osteoclast absorption (55,89). In vivo studies, NG 
has mostly been administered orally in OVX mice models, 
with different studies using NG interventions in animal 
models at doses ranging from 40–1500 mg/kg, and 300 
mg appears to be the optimal concentration for the preven-
tion of devitalized osteoporosis (30,49,88,90); however, 
lower doses (5mg/kg) of NG have also been reported to 
increase bone mass in OVX mice (91). Of course, there are 
different doses and delivery methods for different animal 
models (13,29). Different cell types and disease models 
differ in their sensitivity to NG and identifying how to 
develop different dosing criteria for different types of bone 
diseases deserves our attention. The low oral bioavailabi-
lity of NG and its easy degradation in circulating blood 
and intestine are the main reasons limiting its therapeutic 
effect and clinical application (92), and therefore, it is par-
ticularly important to optimize the NG treatment regimen. 
Biomaterials loaded with NG can well control the release 
of NG and improve osteogenesis in vivo. NG combined 
with other therapeutic modalities (90), growth factors (34), 
or biomaterials (93-95) rather than monotherapy provides 
new ideas for maintaining bone homeostasis and for the 
application of natural derivatives in bone tissue enginee-
ring and regenerative medicine. In addition to NG, there 
are many other natural flavonoids that have biological and 
therapeutic effects (96-104).

In conclusion, NG has the advantages of ubiquity, cost-
effectiveness, multi-biological activity, and multiple thera-
peutic targets. It has great potential for use in the treatment 
of various bone diseases in the future.
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