

Cellular and Molecular Biology

E-ISSN: 1165-158X / P-ISSN: 0145-5680

www.cellmolbiol.org

Distribution and identification of main viruses infecting pepper in Qinghai

JiaHui Yan[#], Lu Hou^{,#}, Hua Weng, Tao He^{*}

State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China

#contributed equally to this work

ABSTRACT
From 2019 to 2021, pepper viruses were investigated in pepper planting areas and collected a total of 333 samples were in Qinghai (The central district, Datong, Huangzhong in Xining; Ledu district, Pingan, Huzhu,
Minhe in Haidong, and Jianzha in Huangnan). RT-PCR and molecular cloning were conducted for virus detec-
tion in 333 suspected viral samples, the results revealed that viruses infecting pepper mainly included 11
capsicum viruses. Tomato spotted wilt tospovirus (TSWV) has the highest detection rate (36%) in Datong
County, and Pepper cryptic virus 1 (PCV1) has the highest detection rate (57%) in Huangzhong County. In the
Haidong, 86.3% of the peppers were Broad bean wilt virus 2 (BBWV2), virus-infected Pepper cryptic virus 2 (PCV2), TSWV and Cucumber mosaic virus (CMV) were detected in Xunhua, among which PCV1 and CMV
had the highest detection rate (30.4%); PCV1, TSWV, and PCV2 were detected in Ledu and PCV2 had the highest detection rate (50%). There were 17 kinds of co-infection and the co-infection of two viruses occurred often. There were only 5 kinds of co-infection of three. Combined infection contained PCV1 and TMV was the most common. The distribution and species of pepper viruses from the pepper planting areas were clarified and it laid the foundation for preventing and controlling pepper viruses across Qinghai province.

Doi: http://dx.doi.org/10.14715/cmb/2023.69.6.3

Copyright: © 2023 by the C.M.B. Association. All rights reserved.

CM B Associatio

Introduction

Capsicum (Capsicum spp.) originated in tropical Latin America and contained five cultivars (C. annuum, C. baccatum, C. chinense, C. frutescens, and C. pubescens) and was one of the oldest and most frequently produced vegetable crops globally (1). Virus disease was a serious disease in pepper production, affecting yield and quality of peppers in pepper production areas all over the world (2-5). More than 70 plant viruses have been documented to infect peppers in various parts of the world since Doolittle initially identified the Cucumber Mosaic Virus (CMV) on peppers in 1923 (6-9). In most nations, the three main viral infections that affect peppers were Tobacco mosaic virus (TMV), Potato virus Y (PVY), and CMV (11-14). 35 viruses from 14 different genera, including Potyvirus, Tobamovirus, Polerovirus, Endornavirus, and other genera, were found in peppers in China (15). The viruses that caused serious damage included Tomato spotted wilt tospovirus (TSWV), Pepper mild mottle virus (PMMoV), CMV, Broad bean wilt virus 2 (BBWV2), Pepper cryptic virus 1 (PCV1), Pepper cryptic virus 2 (PCV2), Cucurbit aphid-borne yellow virus (CABYV), Melon aphidborne yellows virus (MABYV), and Tomato yellow leaf curl virus (TYLCV) (15-18).

Qinghai is located in the northeastern part of the Qinghai-Tibet Plateau. Its distinctively mild environment and lengthy sunny hours were ideal for the ecological industry of plateau summer vegetables. Pepper, a significant plateau specialty vegetable in Qinghai, was well-known for its distinctive flavour and had a very bright future. It had resulted in a high incidence of pepper viral infections due to the expanding pepper crop area and frequent exchange of germplasm resources. In 2017 Li et al. (19) discovered the Pepper Mild Mottle Virus (PMMoV) in Haidong City, Qinghai Province. In 2019 in Qinghai, Liu et al. discovered CMV, Turnip Mosaic Virus (TuMV), TMV, and BBWV2 in peppers (15).TSWV was discovered on Qinghai peppers by Wu et al (20). Most of the samples from earlier studies were localised, and the sampling regions did not encompass all of the Qinghai pepper growing fields. It was therefore unable to identify the primary species causing damage in the current pepper production to effectively prevent and control pepper virus infections. In this work, we used a systematic collecting method to gather samples of a viral illness from pepper-growing areas in Qinghai Province. The application of the RT-PCR assay allowed for the detection and identification of the virus species present infesting Qinghai peppers, providing a scientific foundation for future prevention and management of pepper viral infections. This study aimed to investigate of distribution and identification of the main viruses infecting Pepper in Qinghai.

Materials and Methods

Sample collection

From 2019 to 2021, a total of 333 suspected leaf samples of pepper viruses were collected from Datong (75 copies), Xunhua (79 copies), Ledu (56 copies), Huzhu (43 copies), Ping An (25 copies), Minhe (9 copies), Huang-

^{*} Corresponding author. Email: hetaoxn@aliyun.com

Cellular and Molecular Biology, 2023, 69(6): 15-22

 Table 1. Sample collection information.

Address of sample collection	Northern Latitude	East longitude	Altitude	Sample Collection Date	Number of samples
Hezhouzhuang, Tal Town, Datong County, Xining City	36.981645	101.664438	2500	2020.07.01	8
Talwan Village, Tal Town, Datong County, Xining City	36.724184	101.750103	2509	2020.07.01	7
Xinzhuang Town, Datong County, Xining City	37.001944	101.620555	2530	2020.07.01	9
Xinjian Village, Xunhua County, Haidong City	35.855833	102.269722	1919	2020.07.02	7
Xincun Village, Xunhua County, Haidong City	35.854444	102.323055	1925	2020.07.02	13
Modern agricultural demonstration park in Xunhua County, Haidong City	35.868333	102.361388	1870	2020.07.02	8
Dazhuang Village, Xunhua County, Haidong City	35.882500	102.459166	1800	2020.07.02	8
Jishi Town, Xunhua County, Haidong City	35.832500	102.525277	2200	2020.07.02	6
Kambura Town, Jianzha County, Huangnan Prefecture	36.100277	101.879444	2010	2020.07.02	4
Zhiganglaka Village, Kambula Town, Jianzha County, Huangnan Prefecture	36.113888	102.027777	2325	2020.07.02	5
Modern Agricultural Demonstration Park, Ledu District, Haidong City	36.475863	102.308224	1900	2020.07.16	16
Baishengou Village, Ping'an Town, Ping'an District, Haidong City	36.517185	102.992187	2183	2020.06.18	25
Modern Agricultural Demonstration Zone, Zunhua County, Haidong City	35.86679	102.35883	1903	2021.08.19	21
Xinjian Village, Jishi Town, Xunhua County, Haidong City	35.87889	102.46572	1920	2021.08.19	9
Xiazhuang Village, Qingshui Town, Xunhua County, Haidong City	35.83422	102.63479	1861	2021.08.19	7
Modern Agricultural Demonstration Park, Ledu District, Haidong City	36.47586	102.308224	2313	2021.06.23	35
Xinbaozi Village, Shoule Town, Ledu District, Haidong City	36.72449	101.75058	2313	2021.06.23	24
Qiaotou Village, Longzhi Township, Minhe County, Haidong	36.18094	102.908592	2313	2021.06.23	9
Xiajiuzhuang Village, Tal Town, Datong County, Xining City	37.01485	101.601413	2529	2021.06.24	47
Xinzhuang Village, Xinzhuang Town, Datong County, Xining City	37.06307	101.585726	2500	2021.06.24	35
Heerying Village, Duoba Town, Huanzhong County, Xining City	36.70048	101.507823	2408	2021.07.05	8
Yula Village, Duoba Town, Huanzhong County, Xining City	36.70906	101.530022	2416	2021.07.05	17
Xiaxihe Village, Lijiashan Town, Huanzhong County, Xining City	36.756559	101.562809	2345	2021.07.05	9
Yuantai Village, Chengzhong District, Xining City	36.527247	101.677120	2518	2021.07.05	9

zhong (28 copies) Jianzha (9 copies) and Xining Urban District (9 copies) in Qinghai Province, China. Healthy plants were collected as a negative control. Each sample was preserved under -80° C. Sample collection information has been shown in Table 1.

RNA isolation as well as cDNA preparation

The leaf sample (about 0.1 g) was subject to homogenization with TRIzol (Tiangen, Beijing, China) to extract total RNA in line with specific protocols (Sun Guosheng et al. 2016). Thereafter, 1% TBE agarose gel electrophoresis (AGE) was conducted to evaluate RNA integrity, while the NanoDrop OneC spectrophotometer (Gene Company Limited, China) was utilized to determine RNA quality and content. Total RNA extracted (2 μ g) was collected for preparation into first-strand cDNA using FastKing gDNA Dispelling RT SuperMix (Tiangen, Beijing, China) in line with specific protocols. cDNA was preserved at -20 °C prior to use.

RT-PCR detection

PCR was completed using the T100 Thermal Cycler PCR system (BioRad, Shanghai, China) under the conditions below, The reaction system (20 μ l) consisted of 2 × Taq PCR MasterMix II 10 µL (Tiangen, Beijing, China), respective primers (1 µl, Table 2, Sangon, Shanghai, China), first-strand cDNA template (1 μ l) and 7 μ L of ddH₂O under the following conditions, 5min initial denaturation under 94 °C; 45s under 94 °C, 45s under Tm(according to specific primer) °C, and 1 min/kb (depending on the product size) under 72 °C for 34 cycles; followed by 10min eventual extension under 72 °C. Thereafter, 1% TAE AGE was conducted to analyze PCR products, followed by the excision of products with desired size from 1% AGE and purification with TIANgel Midi Purification Kit (Tiangen, Beijing, China). After purification, this assay ligated DNA fragments to a pEASY-Blunt Cloning vector (TransGen, Beijing, China), followed by transfection in Escherichia coli Trans-T1 competent cells (Transgen, Beijing, China) to conduct sequencing (Sangon, Shanghai, China).

Sequence as well as phylogenetic analysis

DNAMAN 7.0 was employed for sequence assembly and alignment. Genome sequences were analyzed with BLAST alignment, <u>http://blast.ncbi.nlm.nih.gov/Blast.cgi</u>, to determine virus type. SPSS20.0 statistical software was used for data processing.

Results

Field disease symptoms of pepper in Qinghai province

As suggested by field visits, common pepper viruses significantly induced symptoms in every assayed region, with a virus prevalence rate of 100% within certain fields. The symptoms included slight vein banding or mosaic, serious malformation, mosaic, stunting, mottling, leaf upward cupping, rolling, yellowing, and vein clearing, together with reduced fruit and leaf sizes (Figure 1). Complex infections added to the difficulties in identifying field symptoms induced by one specific virus. As for symptomatic viral infections, the symptom just has one favorable effect on identifying the virus in the distinct difference between normal and virus-affected plants. Nonetheless, identifying the typical virus in zucchini squash according to symptoms only is not easy, since there might be asymptomatic and complex viral infections, or abiotic diseases like a nutrient deficiency. Generally speaking, visual symptom inspection combined with RT-PCR as well as additional tests for validation is important for accurately diagnosing viral infections.

Types and distribution of virus diseases in peppers

In verification tests, 10 typical samples were collected from every virus for positive and negative controls, which were then performed RT-PCR by the use of corresponding primers. Table 3 and Figure 2 display diverse pepper-infecting virus frequencies. Among those 333 samples harvested, 267 were under the infection of one or more viruses, equivalent to the 80.1% infection rate. The results showed that a total of 11 viruses were detected in 333 samples. Single infections accounted for 42.64% (142/333) of plant samples. Complex viral infections that involved 2 and 3 viruses in various combinations were commonly seen.

Infected virus distribution and incidence were different according to the different collection sites. Haidong region displayed the highest infection rate (infections caused by one or more viruses) of 86.3% among those harvested samples, while Xining (71.4%) and Huangnan (44.4%) ranked the second and third places, respectively (Table 3).

Such differences in virus prevalence rates among diverse regions might be associated with the original inocula sources, locations, hosts, as well as early transmission vectors. PCV1, PCV2, MABYV, TSWV, TMV and CABYV could be found within samples at the different counties in Xining, TSWV has the highest detection rate (36%) in Datong County, and PCV1 has the highest detection rate (57%) in Huangzhong County (Figure 2). In the Haidong, 86.3% of the peppers were virus-infected. PCV2, BBWV2, TSWV and CMV were detected in Xunhua, among which PCV1 and CMV had the highest detection rate (30.4%); PCV1, TSWV, and PCV2 were detected in Ledu and PCV2 had the highest detection rate (50%); PCV1, MABYV,

Figure 1. Symptoms of pepper caused by viruses.

 Table 2. Primers used for pepper virus detection.

Virus	Primmer Name	Sequence (5'-3')	Annealing temperature (°C)	Fragment size (bp)
Chilli wain al mottle winna	ChiVMVF	GGAAARGCNCCNTAYAT	40	700
Chilli veinal mollie virus	ChiVMVR	CGCGCTAATGACATATCGGT	49	/90
Turnin mossie vinus	TuMVF	TAAACGGAATGTGGGTGATGATGG	62.2	277
Turnip mosaic virus	TuMVR	GTCCTCGGTCGTATGCCTTTCC	02.5	5//
<i>T</i> -1	TMVF	GATTCGTTTTAAATATGTCTTAC	5 A (5	(00
<i>Tobacco mosaic virus</i>	TMVR	CTTCGATTTAAGTGGAGGGA	34.03	600
T	ToMVF	TCTCAAGAATGTTACACGGGAAG	57.2	090
<i>Iomaio mosaic virus</i>	ToMVR	CGCATTCTCCGTAATTTTGATC	57.5	980
	ToMMVF	CTGGAGAAGACTGGGTCTAG	(0, 2)	1102
<i>Iomaio motile mosaic virus</i>	ToMMVR	TTCGGTAAGTTCAATGGGACCT	00.2	1195
	PMMoVF	CCTCTTCCGAGAGAATCTGAGAC	50	700
Pepper mild mottle virus	PMMoVR	CGTGTTTCCAAACTTCAGCCAAG	39	/90
Tobacco mild green	TMGMVF	GAGGAAATTGAGGATAATGTAAGTG	57.0	700
mosaic virus	TMGMVR	ACGCCATACCACAGTATACAC	57.8	/00
Cucumber	CGMMVF	ATGGCTTACAATCCGATCAC	50.15	401
green mottle mosaic virus	CGMMVR	CTAAGCTTTCGAGGTGGTAGC	59.15	481
Pepper vein yellows	PeVYVF	CGTGGAAGCGTGCTACTCG	(1.15	570
virus	PeVYVR	CTCATCAGTGAAGACTCGACC	61.15	579
	TVDVF	GCAACAGCGAGACTTTCATCT	57 0	0.57
Tobacco vein distorting virus	TVDVR	CRTTGCCTTTATAGAGCAGCC	57.8	357
Tomato spotted wilt	TSWVF	TCACTGTAATGTTCCATAGCAA	52.0	0.61
tospovirus	TSWVR	AGAGCAATYGTGTCAATTTTATTC	53.8	861
	CMVF1	CCGAAGTAACCCAYGGTCGT		
	CMVR1	GATTTGTCCATGACTCGACTC	59.15	969
Cucumber mosaic virus	CMVF2	CGCGAGTTAGCGTTTAGTTGT	50.15	
	CMVR2	TTAACGTCTTCGGACGCCG	59.15	762
_	TAVF	ATGGCCCAAAACGGTACGG		
Tomato aspermy virus	TAVR	TCACACCGGGAGCGTTGAAG	62	657
	TOCVF	GCTTCCGAAACTCCGTCTTG	<i></i>	100
Tomato chlorosis virus	TOCVR	TGTCGAAAGTACCGCCACC	61	439
	PVXF	AGTGCGCGAGGTTTACCAATC		
Potato virus X	PVXR	GTGGTTTGCCGCGAACGATTC	61.3	790
	TBTVF	TACCACACCTAAACAGCGTTG		
Tobacco bushy top virus	TBTVR	CTCATCTCCCGCTAAGTCAG	60.15	1049
	AMVF	GTGCGTATAGATGCCGGTTC	~~ . .	
Alfalfa mosaic virus	AMVR	GAGCGAATAGGACTTCATACC	60.15	900
	STVF	TGATGGAGGATATCTACTGTCATT		
Southern tomato virus	STVR	ACAAGATGTTTAAAGCCGTGTCC	57.8	681
	PoleF	GAYTGYTCYGGTTTTGACTGG		
Polerovirus	PoleR	CGTCTACCTATTTSGGRTTN	50.65	1394
	PVY-CP-F	GGAAATGACACAATCGATGC		
Potato virus Y	PVY-CP-R	TCAAACTGATTATTAATTATG	52.15	245
Chilli ringspot virus	ChiRSVF	ATTACAGCAGAGCGTGAAAAGCAG		
	ChiRSVR	CTGGAAATCCTGCTATTGTTGACG	60.3	600
	PepMoVF	ATGAGCAGCTCAAGATCGG		
Pepper mottle virus	PepMoVF	CATATTCCTGACCCCAAGCAGG	60.15	500
Reet	BWYVF	TCAACGGGGAAGCATGGGAATC		
western yellows virus	BWYVR	CATTAGATTTCGCATTTTGGTAGGC	60.8	1080
Cucurbit anhid-horne	CABYV F	CARGCACACACGAGTTGCAAGC		
yellows virus	CABYV R	GATYTTATAYTCATGGTAGGCCTTGAG	60.8	482

JiaHui Yan et al. / Distribution and identification of viruses infecting pepper, 2023, 69(6): 15-22

Melon aphid-borne yellows	MABYVF	GGTACCACTACGCTACGCAGCAGCC	(1)	262
virus	MABYVR	GATYTTATAYTCATGGTAGGCCTTGAG	04.3	202
Down or commission in 1	PCV1F	ACATCATCGAGGAGTTCACC	50	245
Pepper cryptic virus I	PCV1R	GCTGTCCTAGAATTGTCTTC	39	243
Dannau amontia vienes ?	PCV2F	TCATCCGTCCAGCTAACGTA	60	275
r epper cryptic virus 2	PCV2R	CGTCTCTTTTCTGAGCGGTA	00	575
Donnou mild mottle vinus	PMMOVF	AGAACTCGGAGTCATCGGC	54	576
r epper mila molile virus	PMMOVR	GAGTTATCGTACTCCCCACG		
Due ad hear wilt wing ?	BBWV2F	AGRTATATGCTTGGGCAAGCGCATG	60	490
<i>Broad been will virus 2</i>	BBWV2R	CATGAACATTCCCCATCTCCACGTG		
Pepper veinal mottle virus	PVMVF	AATTAAG CCATTGATTGACCA	56	761
	PVMVR	AGCGCCAATTA TGAAACCGC		
Tomato zonate spot	TZSV	CCCGGATCCAGAGCAAT	56	930
tospovirus	TZSV	CACTGGATCTTTTTTTTG		
Ust nonnau and sugarimus	HPEVF	CACGGCAGTAGCAAATAGCA	57	546
1101 pepper endorndvirus	HPEVR	TCCGTGTTAATTTGCGTGAA		

TMV and TMGMV were detected in Huzhu and PCV1 had the highest detection rate (83.7%), followed by TMV (81.4%); PCV1 (12%), TSWV (36%) and PCV2 (48%) were detected in Pinan; Minhe County collected fewer samples, and detected CMV, PVX, MABYV. There are few pepper planting areas in Huangnan Prefecture, mainly concentrated in Jianzha County. BBWV2 was detected in 4 of 9 samples collected from Jianzha County (44.4%). In summary, our assayed peppers were subject to infections by PCV1, TMV, TSWV, MABYV, and PCV2 in Xining and Haidong (Table 3). Consequently, PCV1 was possibly a dominant virus occupying almost 30% of the overall prevalence rate, and its greatest rate was 83.7% in Huzhu (Haidong). TMV ranked second place, occupied 21.6%, and its greatest rate was 81.4% in Huzhu (Haidong). PCV2 and TSWV reported prevalence rates of 18.9 and 17.7% and PCV2 with the highest rate in Ledu (50%), and Pinan (48%), respectively. Among the collected samples, CMV had a low prevalence rate relative to BBWV2, PVY, CA-BYV, TMGMV, and PVX (Figure 3). Such difference was related to diverse factors, including cultivation environment, geographic factors, viral vectors, or farm management.

Compound infections of pepper virus in Qinghai

Additionally, this work discovered complex infections from those affected pepper plants. Peppers were infected via 2 and 3 distinct viruses (Table 4 and Figure 4). Among those 267 infected pepper samples, complex infections by two viruses could be seen among 112 samples (41.9%), and triple infections were found in 39 samples. Mixed double-infections (PCV1- MABYV, TSWV-MABYV, PCV1-TMV, PVY-TMV, TSWV-PCV1, BBWV2-TSWV,

Table 3. Detection results of the major viruses in diseased pepper in Qinghai.

Areas	County	Sample number	Number of virus- infected samples	Virus detection rate (%)	Virus species
	Datong	75	52	69.3	PCV1, MABYV, TSWV, TMV
Xining	Huang Zhong	28	19	67.9	PCV1, TMV, CABYV, PCV2
	Center City	9	9	100	PCV1, TMV
	Xunhua	79	70	88.6	CMV, BBWV2, TSWV, PCV2
	Ledu	56	37	66.1	PCV1, TSWV, PCV2
Haidong	Huzhu	43	43	100	PCV1, MABYV, TMV, TMGMV
	Pingan	25	24	96	TMV, CMV, PVY
	Minhe	9	9	100	CMV, PVX, MABYV
Huangnan	Jianzha	9	4	44.44	BBWV2

JiaHui Yan et al. / Distribution and identification of viruses infecting pepper, 2023, 69(6): 15-22

Table 4.	The detection	rate of the co	mposite virus	and co-infection	types in Qinghai.
			1		~ ~ ~

County	Detection rate of composite virus (%)	Co-infection types
Datong	71.2	PCV1-MABYV, TSWV-MABYV, PCV1-TMV, PCV1-TMV-TSWV, TSWV-PCV1
Huang Zhong	42.1	CABYV-PCV1-TMV
Center city	100	PCV1-TMV
Xunhua	47.1	CMV-PCV2, BBWV2-TSWV, PCV2-TSWV
Ledu	32.4	PCV1-PCV2
Huzhu	100	PCV1-TMV-TMGMV, PCV1-TMV-MABYV, TMV-MABYV, PCV1-MABYV, PCV1-TMV
Pingan	29.2	CMV-TMV, PVY-TMV
Minhe	25	CMV-PVX-MABYV, CMV-MABYV

TMV-MABYV, CMV-MABYV, CMV-PCV2, PCV1-PCV2, CMV-TMV, PCV2-TSWV), triple-infections (CMV-PVX-MABYV, PCV1-TMV-TMGMV, CABYV-PCV1-TMV, PCV1-TMV-TSWV, PCV1-TMV-MABYV) could be seen at different levels (Figure 4). Typically, PCV1-TMV, PCV1-MABYV, and PCV2-CMV infection was mostly found. Analyzing the compound infection phenomenon in various regions, the compound infection rates of Huzhu (100%), Datong (71.2%), and Chengzhong District of Xining City (100%) were relatively high (Table 3), among which 43 samples were collected in Huzhu County were all compound infection, the number of samples collected in Chengzhong District of Xining City was small, but the 9 samples collected were all co-infected with PCV1 and TMV. In Huangzhong, only CABYV-PCV1-TMV compound infection was detected, and the infection rate was 42%. Xunhua, Ledu, and Ping'an were mainly infected by two kinds of viruses. Among them, the combined infection rate in Xunhua County was 47.1%, and there were mainly three types, namely PCV2-TSWV, CMV-PCV2, and BBWV2-TSWV.

Discussion

In this study, the RT-PCR method was used to detect and evaluate the viral species infecting peppers in Qinghai Province thoroughly. Eleven viruses, including PCV1, MABYV, TSWV, TMV, CABYV, PCV2, TMGMV, CMV, BBWV2, PVY, and PVX were discovered as infecting peppers in Qinghai Province. The detection rates of PCV1, TMV, PCV2, and TSWV among them were all greater than 15%. In the study's pepper production area, the aforementioned four viruses were present in 7 of the study's 9 counties. Accordingly, it was assumed that PCV1, TMV, PCV2, and TSWV were the main viruses infecting peppers in Qinghai at the time.

Researches had been done on the types of viruses that commonly infect peppers in Qinghai Province. Six viruses were found on peppers in Qinghai: CMV, TMV, PMMoV, BBWV2, TuMV, and TSMV (15,19,20). Samples from open-field peppers were not included in the previous study, which was mostly conducted in Haidong City's greenhouses. By methodically gathering virus samples from pepper production sites in Qinghai Province, researchers in this study discovered seven new viruses: TMGMV, MABYV, CABYV, PCV2, PVX, PCV1, and PVY. The detection rate of the MABYV virus was higher at 13.2%. It demonstrated that the prevalence of pepper viral disease species and number appear to alter dramatically with frequent seedling transfers, and the dominant population of virus disease changes noticeably in different years. The surveillance of virus diseases must be done well. Additionally, TMV and TSWV were more frequently found on Qinghai peppers than the other viruses, with detection rates of 21.6% and 17.7%, respectively, among the 11 viruses found. This is in line with the findings of other investigations.

Different virus species and dominant viruses were found in various geographical locations. CMV, PMMoV, TMV, PVY, and TEV were among the pepper viruses in the Gansu Hexi region, with TMV and CMV being the predominant virus species (22). CMV was the most prevalent viral species, with BBWV-2, TMV, TuMV, and ToMV also infecting peppers in Chongqing (23). The viruses that infected peppers in Hainan Province were CMV, ChiVMV, PMMoV, ChiRSV, and PVMV. CMV was the predominant virus, but three viruses-ChiRSV, PMMoV, and PVMVwere found at levels greater than 30% and have since grown to be significant pathogens on peppers in Hainan Province (24). Ten types of viruses, including BBWV-2, CMV, PMMoV, TMV, PVY, ToMV, TuMV, TSWV, AMV, and PepMoV, infected peppers in Guizhou province (25). There were several viruses affecting peppers in Tianjin, with CMV predominating among them. These viruses included BBWV, CMV, TMV, ToMV, TSWV, and TYLCV (26). The findings of this study revealed that among the 11 viruses affecting peppers in Qinghai, PCV1, TMV, PCV2, and TSWV were the prevalent viruses. These viruses differed noticeably from the dominant viruses on peppers in other Chinese provinces.

Additionally, it was discovered that the predominant virus kinds in various parts of Oinghai Province varied significantly. Datong County had the highest rate of TSWV detection, Huanzhong County had the highest rate of PCV1 detection, Xunhua County had the highest rate of CMV and PCV2 detection, Ledu District had the highest rate of PCV2 detection, Huzhu County had the highest rate of TMV and PCV1 detection, Ping'an District had the highest rate of PVY detection, and Jianzha County had the highest rate of BBWV2 detection. The predominant virus affecting peppers in Qinghai Province did not correlate with the predominant virus in Jianzha and Zhuanhua counties. The local farming system, cultivars, and environment may all play a role in this phenomenon. For instance, the primary cultivar in Xunhua County is line pepper, which has been grown there since the 1960s. This cultivar has a long growing season and a small number of varieties, which is distinct from the cultivation pattern in other parts

of Qinghai Province.

Compound plant virus invasion was a typical natural occurrence. In nine Chinese provinces, Zhang (27) found that 79.33% of the samples tested were simultaneously infected by two or more viruses. According to Yao et al. (28), CMV and PMMoV compound infection of pepper was widespread in fields in the regions of Hainan and Guangdong. In the Chongqing region, Guo et al. (29) observed that the compound infestation rate of the pepper viral disease was 66.10%, with the compound infestation rates of two, three, four, or more viruses being 30.51%, 26.27%, and 9.32%, respectively. In Guizhou, peppers were infected by 32.66% of two or three viruses, according to Wang et al. (25). In this investigation, we discovered that Qinghai peppers frequently have virus complex infestation. There were more complicated PCV1 and TMV infestation types among the 267 positive samples, with 125 samples having two or three viral complex infestations. Thus, it was clear that viruses two and three made up the majority of the invasion. This study clarified the main virus species on Qinghai pepper through systematic investigation, which laid the foundation for further research on the pathogenic mechanism of these viruses.

In 7 out of the 9 counties and cities in Qinghai, PCV1, TMV, TSWV, TMV, CABYV, PCV2, TMGMV, CMV, BBWV2, PVY, and PVX all had detection rates above 15%. They were the predominant viruses that affect pepper in Qinghai and are very dissimilar from the predominant viruses that affect pepper in other Chinese provinces. Furthermore, there was a significant infestation of two and three virus complexes, which were the most common types of infestation, on the Qinghai pepper at the same time.

Funding statement

This work receives the program of the science and technology international cooperation project of Qinghai Province (No. 2022-HZ-806).

Conflicts of interest

The authors declare that they have no competing interests.

Data availability statement

The data used to support the findings of this study are included in the article.

Author contributions

Conceptualization, JH.Y. and T.H.; methodology, JH.Y., and L.H.; software, T.H., H.W.; formal analysis, JH.Y.; investigation, T.H.; resources, L.H.; writing–original draft preparation, T.H.; writing–review and editing, JH.Y.; supervision, JH.Y., and T.H.; project administration, H.W.; All authors have read and agreed to the published version of the manuscript.

References

- 1. Paran I, Knaap E, Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exp Bot 2007;58(14): 3841-3852.
- Hu YL, Chen YQ, Su XX, et al. Molecular characterization of wild tomato mosaic virus and chilli veinal mottle virus mix-infecting chilli pepper in China. J Phyto Pathol. 2023;171:110–117.
- 3. Tavares-Esashika ML, Campos RN, Maeda MH K, et al. Development of a heterologous gene expression vector in plants based

on an infectious clone of a tobravirus, pepper ringspot virus. Ann Appl Biol 2022;181(1), 107–116.

- Rivera-Toro DM, López-López K, Vaca-Vaca JC. First molecular characterization of pepper severe mottle virus infecting chili pepper crops in Colombia. J Plant Pathol 2021;103:321–325.
- 5. Esmaeilzadeh F, Koolivand D. First report of tomato brown rugose fruit virus infecting bell pepper in Iran. J Plant Pathol 2022;104:893.
- Kenyon L, Kumar S, Tsai W S, et al. Virus diseases of peppers (Capsicum spp.) and their control. Adv Virus Res 2014; 90: 297-354.
- Dong J H, Cheng X F, Yin Y Y, et al. Characterization of tomato zonate spot virus, a new tospovirus in China. Arch Virol 2008;153(5): 855-864.
- Li Y, Wang Y, Hu J, et al. The complete genome sequence, occurrence and host range of Tomato mottle mosaic virus Chinese isolate. Virol J 2017;14(1): 1-9.
- Luo Y, Qin C, Qiu HR, et al. Novel microRNAs associated with the immune response to cucumber mosaic virus in hot pepper (Capsicum annuum L.). Physiol Mol Plant P,2023;124, https:// doi.org/10.1016/j.pmpp.2023.101963.
- Khaled-Gasmi W, Souissi R, Boukhris-Bouhachem S. Cucumber mosaic virus epidemiology in pepper: Aphid dispersal, transmission efficiency and vector pressure. Ann Appl Biol 2023;182(1), 101–111.
- Rezende JF, Leite ME, Nogueira DW, et al. A new resistance gene to PepYMV (Pepper yellow mosaic virus) in Capsicum annuum L. Plant Breed. 2020;139:65–72.
- 12. Fiallo-Olivé E, Navas-Castillo J. Tomato chlorosis virus, an emergent plant virus still expanding its geographical and host ranges. Mol Plant Pathol 2019;20(9):1307–1320.
- 13. Ahamedemujtaba V, Atheena PV, Bhat AI, et al. Symptoms of piper yellow mottle virus in black pepperas influenced by temperature and relative humidity. Virus Dis. 2021;32(2):305–313.
- Fiallo-Olivé E, Navas-Castillo J. Tomato chlorosis virus, a promiscuous virus with multiple host plants and whitefly vectors. Ann Appl Biol 2023;182(1):29–36.
- Liu Y, Li F, Li YY, et al. Identification, distribution and occurrence of viruses in the main vegetables of China. Sci Agri Sin 2019;52 (2): 239–261.
- Hu Y, Fa L, Su X, et al. First report of wild tomato mosaic virus infecting chilli pepper in China. Plant Dis 2021;105. https://doi. org/10.1094/PDIS-01-21-0010-PDN.
- 17. Wu R, Wu G, Huang Y, Zhang H, et al. VsiRNA18 derived from tobacco curly shoot virus can regulate virus infection in Nicotiana benthamiana. Mol Plant Pathol 2023;24, 466–473.
- Jiang L, Huang Y, Sun L, et al. Occurrence and diversity of Tomato spotted wilt virus isolates breaking the Tsw resistance gene of Capsicumchinense in Yunnan, southwest China. Plant Pathol 2017;66:980–989
- Li TF, Wu SH, Zhao WB, et al. Molecular detection of mild mottle virus isolated from pepper in Haidong, Qinghai province. Jiangsu J Agri Sci 2017;33 (04): 958–960.
- Wu SH, Tu LQ, Xian WR, et al. Detection and identification of Tomato spotted wilt tospovirus on pepper from Qinghai Province. Acta Hort Sinica 2020;47 (7): 1 391–1 400.
- Sun GS, Ma ZH, Dai ZL, et al. Comparison of three methods on total RNA extraction from the root of Capsicum annuumL. China Cucurbits Vegetables,2016;29(1):8–10.
- 22. Wen CH, Liu ZJ, Zhang LP, Liu J, et al. Identification of viruses infecting Capsicum annuum L. in Hexi area of Gansu province. China Vegetables 2010;16: 74-78.
- 23. Guo S Y, Tong Y, Huang Y, et al. Preliminary identification and analyses of viruses causing pepper virus disease in Chongqing,

China. Acta Hort Sinica 2015;42(2): 263-270.

- Liang J, Wang JH, Zhang SY, et al. Identification and Detection of Pepper veinal mottle virus in Hainan. Chinese Journal of Tropical Crops, 2015;36(5): 966-971.
- 25. Wang LS, Chen W, Tan QQ, et al. Detection of viruses on pepper in Guizhou. Guizhou Agricultural Sciences, 2015; 43(8): 99-101.
- Gao W, Wang Y, Zhang CX, et al. Investigation and pathogen preliminary identification of pepper virus disease in Tianjin. Shandong Agri Sci 2016;48(3): 91-94.
- 27. Zhang ZQ. The research on Capsicum annumm L. virus diseases[D]. Changsha: Hunan Agricultural University, 2009.
- 28. Yao YR, Chen GH, Feng LX, et al. Molecular detection of pepper viruses in southern vegetable production bases. China Vegetables 2013; 10: 84-89.
- 29. Guo SY, Tong Y, Huang Y, et al. Preliminary identification and analyses of viruses causing pepper virus disease in Chongqing, China. Acta Horticulturae Sinica 2015;42(2): 263-270.