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Introduction

Among neurodegenerative diseases, Alzheimer's di-
sease (AD) is the most common in the elderly population. 
Due to its irreversible and progressive nature, it gained 
more attention for early management. AD is the most 
prevalent neurodegenerative cause of dementia, causing 
considerable individual morbidity and death as well as a 
large financial burden on the healthcare system (1-4). De-
mentia is a word used to describe a decrease in a cognitive 
capacity. AD accounts for about three-quarters of demen-
tia cases, with vascular dementia, combined Alzheimer's, 
and dementia with Lewy bodies, and frontotemporal de-
mentia accounting for the rest (5, 6). AD is described as 
Early-onset Alzheimer's disease (EOAD) and late-onset 
form (LOAD). EOAD is found at the age of 65 and is more 
progressive. 5-10% cases are found in EOAD, while 10-
15% of cases of AD are related to the mutation in amy-
loid precursor protein (APP), Presenilin-1 (PSEN1), and 
Presenilin-1 (PSEN2) (7). Alzheimer's dementia affects 
an estimated 6.2 million Americans aged 65 and over. In 
2019, 121,499 official deaths were recorded, making it 
the sixth leading cause of death in the United States and 
the fifth leading cause of death among Americans aged 65 
and older. Fatalities from stroke, heart disease, and HIV 
declined between 2000 and 2019, while recorded deaths 
from AD increased by more than 145%. Health care, long-
term care, and hospice services for persons 65 and older 
with dementia are expected to cost $355 billion in 2021. 

In 2020, unpaid dementia care was estimated to be worth 
$256.7 billion. In 2020, an estimated 15.3 billion hours of 
unpaid care were provided to persons with AD or other 
dementia by more than 11 million family members and 
other unpaid caregivers (8).

There are three defined clinical phases present in AD, 
such as pre-symptomatic, pre-dementia phase, and clini-
cally defined dementia phase (9) as shown in Figure 1.

In AD, age is a major risk factor and it accounts for 50–
75% of dementia cases. Amyloid-beta (Aβ) 40, Aβ42, total 
tau, p-tau, and neurofilament, an intraneuronal protein and 
component of the axonal cytoskeleton showing neuronal 
degeneration, are the most prevalent biomarkers tested to 
represent AD pathology in biofluids (7, 10). About 70% of 
AD is caused by genetics, while obesity, cardiovascular 
disease, hypertension, and diabetes elevate the risk of AD 
(11). More than 30 dominant mutations in the APP gene 
(present in chromosome 21q21) have previously been 
discovered and account for 15% of cases of early onset. 
Mutations in the PSEN1 gene (14q24.3) are connected 
with 80% of cases of early-onset AD, whereas 5% of cases 
are linked with PSEN2 mutations (1q31-q42) (12). Three 
APOE alleles such as ε2 (5-10%), ε3 (65-70%), and ε4 (15-
20%) are defined and give rise to apoE2, apoE3 and apoE4 
isoforms with different frequencies range (13). The ε4 al-
lele is the foremost risk factor for late-onset AD, having 
3-fold of heterozygosity and 12-fold for homozygosis (14, 
15). Karch and Goate, 2014 describe the new genes asso-
ciated with AD risk, including ABCA7, BIN1, CASS4, 
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CD33, CD2AP, CELF1, CLU, CR1, DSG2, EPHA1, 
FERMT2, HLA-DRB5-DBR1, INPP5D, MS4A, MEF2C, 
NME8, PICALM, PTK2B, SLC24H4-RIN3, SORL1, and 
ZCWPW1 (14).

Amyloid imaging tracers like Pittsburgh Compound-
B, Neuraceq™ (florbetaben F18), Amyvid™ (florbetapir 
F18), and Vizamyl™ (flutemetamol F18) and tau ligand 
(Tauvid™; 18F-flortaucipir) are FDA approved technique 
for AD pathology (16). While whole-exome sequencing 
is now available for regular screening in the clinic, its 
interpretation (and accompanying genetic counseling) is 
primarily confined to known mutations in APP, PSEN1, 
PSEN2, GRN, and MPT, which account for only a tiny 
percentage of EOAD patients before age 65 (7). In recent 
years, there has been a lot of attention on developing alter-
native methods that target the AChE enzyme as well as 
additional targets, including BuChE, Aβ, β-secretase-1, 
metal antioxidant capabilities, and free radical scaven-
ging capability (17). As a result, the proteins Aβ, BACE-1, 
RAGE, AChE, BuChE, Caspase 8, P2X7 receptors, and 
Monoamine Oxidase are being effectively targeted for the 
therapy of AD (18-21). The several known compounds 
against different target enzymes of AD were reported in 
Table 1. The aim of this review is to provide a brief intro-
duction to AD along with the related concept of several 
therapeutic compounds involved in the progression of the 
disease and its management using different natural com-
pounds against selected targets.

Mechanism of Cholinesterase enzyme

AChE and BuChE are encoded by separate genes on 
human chromosomes 7 (7q22) and 3 (3q26), respectively, 
and have 65 percent amino acid sequence homology. Both 
AChE and BuChE feature a mainly hydrophobic active 
gorge, which is 20 Å deep in AChE and 20 Å deep in 
BuChE (29). When ACh hits this active site, it binds to 

two sites: a catalytic area near the gorge's bottom and a 
choline-binding site around halfway. ChE enzymes hydro-
lyze acetylcholine (ACh) to choline and acetate, rende-
ring it useless as a neurotransmitter (30). The most widely 
used medicines for the treatment of AD target the enzyme 
AChE, which is involved in the breakdown of the neu-
rotransmitter ACh. However, most of the treatments only 
give symptomatic relief (17).

Monoamine oxidases (MAOs)

MAOs are enzymes that are covalently linked to a 
cysteine residue and include flavin adenine dinucleotide. 
MAOs' physiological activities are influenced by the type 
of their substrates, which include indoleamines like sero-
tonin and tryptamine, as well as epinephrine19 and trace 
amines (31, 32). MAO-A and MAO-B are two isoforms of 
the enzyme that are found mostly in the outer membrane 
of mitochondria in neuronal, glial, and other cells. MAO-
A and MAO-B have 527 and 520 amino acid residues, res-
pectively, and their amino acid sequences are identical up 
to 70% (33, 34). The deamination of norepinephrine and 
serotonin is preferentially catalyzed by MAO-A (35, 36). 
Thus, MAO‐AIs result in a rise in norepinephrine levels 
and lower 3‐methoxy‐4‐hydroxymandelic acid and 3‐
methoxy‐4‐hydroxyphenylglycol and reduce 5‐hydroxyin-
doleacetic acid. Furthermore, following MAO inhibition, 
trace monoamines such as tryptamine and octopamine are 
elevated. MAO-AIs have been widely utilized as antide-
pressant drugs because deficits of these two neurotrans-
mitters have been related to the development of depression 
(37-39). The crystal structure of human MAO-A (hMAO-
A) in combination with harmine was determined. (PDB: 
2Z5X) (40), in which harmine interacts with the residues 
of amino acids Tyr69, Asn181, Phe208, Val210, Gln215, 
Cys323, Ile325, Ile335, Leu337, Phe352, Tyr407, and 
Tyr444 within the active center cavity of hMAO‐A (40). 
The crystal structure of hMAO-B was also established for 
the first time (PDB: 1GOS) (41). hMAO-B has two cavi-
ties in its active site: a hydrophobic substrate cavity and an 
entrance cavity. The entrance cavity is lined by the resi-
dues Phe103, Pro104, Trp119, Leu164, Leu167, Phe168, 
Leu171, Ile199, Ile316, and Tyr326 (42).

Natural Compounds

The main kind uses natural resources to treat diseases 
and the most widely used resources belong to the plant 
kingdom. Various plant foods have medicinal values which 
are known as nutraceutical foods and can be used for the 
prevention of AD(1). The medicinal properties of plants 
are due to the bioactive compounds present in them. These 

Figure 1. The different phases of Alzheimer's disease.

Target name Compounds name References
AChE Indirubin and dehydroevodiamine, Quinoline, Carbamates (17, 22)
BuChE Fluorobenzylcymserine (23)
Caspase 8 rutaecarpine (24)
Aβ Vincamine, Ajmalicine, Emetine (25)
BACE Ajmalicine, Yohimbine, Huperzine A, Physostigmine, LY2811376, LY2886721, E2609 (26, 27)
MAO Ladostigil, Selegilline, Rasaglime (20)
apoE4 protein Epicatechin Gallate, Fulvic acid, and Tideglusib  (28)

Table 1. The list of reported natural and synthetic compounds as an inhibitor of the selected target for managing Alzheimer's disease.
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ted to have strong inhibition of acetylcholinesterase (59). 
Isorhynchophylline, a major compound of Uncaria rhyn-
chophylla, possesses potential neuroprotective effects. In a 
rat model, it has been shown to restore Aβ–induced cogni-
tive impairment, reduce phosphorylation of tau, and inhi-
bit neuronal apoptosis (60). Lycorine and galanthamine 
extract of Crinum L., bulbous monocot, have been repor-
ted to have the inhibitory potential of acetylcholinesterase 
in an in-vitro study (61). Palmatine, present in different 
plants, including Berberidaceae, Papaveraceae, Ranuncu-
laceae, and Menispermaceae, is a yellow isoquinoline 
alkaloid that has been used to treat various diseases (62). 
In an in-vitro, in-vivo, and ex-vivo experiment, it has been 
reported to show anti-inflammatory, anti-depressive, anti-
pyretic, anti-neurodegenerative, inhibited tau aggregation 
and disassembled pre-formed fibrils (63, 64). Sanguina-
rine is an alkaloid present in the rhizomes of Sanguina-
ria Canadensis and has been shown to Inhibit the activity 
of acetylcholinesterase in an in-vitro study (65). Taspine 
extracted from the bark and leaves of Magnolia x soulan-
giana has also shown the inhibitive activity of acetylcholi-
nesterase in an in-vitro study (66).

From the above studies, the natural compounds have 
the potential to prevent AD. However, no permanent cure 
for AD has been found until now and natural compounds 
can retard its progression. There are other plant sources 
and compounds having anti-inflammatory, anti-Amyloi-
dogenic, anti-cholinesterase, acetylcholinesterase inhibi-
tion, tau protein, beta-amyloid, and oxidation stress reduc-
tion properties as shown in Figure 2.   

Synthetic FDA-approved drugs 

Tacrine was introduced in 1945 by Adrian Albert and 
is known as one of the main FDA-approved drugs for AD 
(67). The IUPAC name of Tacrine is 9-Amino-1,2,3,4-
tetrahydroacridine and is available in the market by the 
name Cognex (67). It shows the reversible inhibition of 
acetylcholinesterase prevention of the cholinergic enzyme 
to stop the neuronal signal transmission between the sy-
napses (68). The use of tacrine is associated with side ef-
fects and is believed to have hepatotoxicity (69). Tacrine-
derived compound Velnacrine has the same activity as AD, 
but in 1994 FDA banned its use due to its toxicity (70). 
Thus, other hybrids have been developed to overcome the 
side effects by altering the basic structure of Tacrine (71).

Memantine is a synthetic compound with IUPAC name 
as 1-amino-3,7-dimethyladamantane. It was synthesized 
by Eli Lilly in 1968 and patented as an antidiabetic agent. 

bioactive compounds have antioxidant, anti-inflammatory, 
antiapoptotic, antithrombotic, acetylcholinesterase, and 
monoamine oxidase inhibition, and neurotrophic activi-
ties. These properties are required to treat AD (43, 44). 
The role of plant-based AD treatment has been verified wi-
thin in-vitro, in-vivo, and in-silico studies. The examples 
of various studies are described below: 

Apigenin (4',5,7-trihydroxyflavone), a common com-
pound of parsley, celery, oranges, onions, chamomile, tea, 
wheat sprouts, and some seasoning (45) is a flavonoid has 
shown a decrease in inflammatory cytokines, Aβ burden, 
oxidative stress, cortical hyperexcitation, and β-amyloid 
neurotoxicity in an in-vitro induced neurogenesis and in-
vivo mouse model of AD (45, 46). Crocin extracted from 
Gardenia jasminoides has been tested in in-vivo mouse 
model of AD. It was suggested that crocin might be a 
promising drug to improve cognitive and memory impair-
ment, with multiple targets (47). Berberine extracted from 
80 traditional Chinese medical plants was tested for their 
in-vitro model of AD based on Ellman's colorimetric assay 
has shown the inhibition of acetylcholinesterase which is 
required for the treatment of AD (48). Catechin present in 
Camellia sinensis has shown cognition contributes to the 
inhibition of acetylcholinesterase in an in-vivo rat model 
of AD (49). Genistein and chrysin isolated from C. villo-
sus were investigated by molecular docking simulation 
and in-vitro models of AD. Both compounds have shown a 
potential neuroprotective ability along with the inhibition 
of human monoamine oxidase A and B (50).  By mole-
cular docking simulation and in-vivo rat model of AD, 
Hesperidin isolated from Valeriana offcinalis has shown a 
neuroprotective effect by strongly inhibiting the Beta-se-
cretase 1 activity and Aβ aggregation (51, 52). In another 
study, flavonols (morin and isoquercitrin) and flavanones 
(hesperidin and neohesperidin) showed a decrease in Beta-
secretase 1, γ-secretase, Aβ fibrillogenesis, caspase-3, cas-
pase-9, apoptosis, amyloid plaque, and tau hyperphospho-
rylation in an in-vivo rat model of AD. This suggested that 
the consumption of foods rich in these compounds may be 
beneficial in neurodegenerative disorders (53). Naringe-
nin is a flavonoid commonly found in citrus fruits, which 
has been reported to decrease inflammatory cytokines, 
NF-κB, and oxidative stress in an in-vitro rat model (54). 
Withanone and withanamides A and C extracted from a 
medicinal plant Withania somnifera, which is also known 
as Indian ginseng, have been reported to protect neurons 
and glial cells and decrease Aβ fibril formation in an in-
vivo rat model of AD (46). In-vitro rat model and in-silico 
results of berberine derived from various plants like Eu-
ropean barberry against AD showed improved cognitive 
behavior and downregulated the AChE expression respec-
tively (55). Dehydroevodiamine, a major phytochemical 
of Evodia rutaecarpa, has been tested in rat brain slices 
with AD and was reported to activate a PP2A Tyr307 
site and inhibit tau phosphorylation (56). Galantamine is 
mainly found in the plants of the genera Amaryllis. It has 
been tested against AD in the mouse model, which showed 
that the preplaque phase ameliorates memory decline and 
improved the unbalanced redox state (57). Huperzine A 
is isolated from plants of the Huperziaceae family. In an 
Alzheimer's transgenic mouse model, it has been reported 
to have anticholinesterase activity and reduces the level 
of Aβ (58). In an In-vitro study, N-methylasimilobine, an 
alkaloid extracted from Nelumbo nucifera, has been repor-

Figure 2. Natural resources having AD-preventing properties.
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Currently, it has been approved by Food and Drug Admi-
nistration to decrease the progression of moderate to severe 
AD. However, it has not been approved for mild to mode-
rate treatments of AD (72). It is being produced in many 
countries with 114 brand names in three forms, capsules, 
oral solution, and oral tablets. It also has various deriva-
tives and isomers like 1-amino-3,7- diethyladamantane, 
1-amino-5,7-dimethyladamantane, and 1-amino-3-ethy-
ladamantane (73). It is against the N-Methyl-D-Aspartate 
receptor and blocks it, thus preventing over-activation of 
glutamine receptors (72). 

Donepezil is an inhibitor of acetylcholinesterase used 
to enhance cortical acetylcholine for the cure of AD (74). 
It is synthesized by an aldol condensation/dehydration 
reaction between the piperidine and the indanone moie-
ties (75). It was approved by the FDA in 1996 to delay 
the decline of cognition in moderate to severe AD patients 
(76). It is available on the market in the form of tablets, 
capsules, jelly, and transdermal patches (77).

A derivative of a toxic compound alkaloid physostig-
mine known as rivastigmine(77) has been used for the 
treatment of AD since 1997. In 2006, it was approved for 
the treatment of mild, moderate, and severe AD (78). It 
is available on the market in the form of capsules, liquid 
form, and transdermal patches (77). The mechanism of 
action of rivastigmine against AD is believed to have dual 
inhibition of acetylcholinesterase and butyrylcholines-
terase activity (78). Mostly these FDA-approved drugs 
have some side effect such as Nausea, vomiting, and loss 
of appetite (https://www.alz.org/media/documents/fda-ap-
proved-treatments-alzheimers-ts.pdf).

Application of nanotechnology in AD treatment

Nanoparticles are nanosized particles with high surface 
area and have wide applications in food (79), packaging 
(80, 81), medicines (82), agricultural (83), etc. Nanotech-
nology can be used in AD treatment in two ways, viz. 
Diagnosis and treatment. Biocompatible nanoparticles, 
after increasing their magnetic and optical properties, can 
be used for early AD diagnosis (84). This diagnosis can 
be performed inside the body in-vivo or outside the body 
in-vitro for biomarker detection (85). The various in-vivo 
and in-vitro nanotechnologies used for AD diagnosis are 
shown in Figure 3.

All FDA-approved synthetic drugs do not completely 
cure AD but can reduce its occurrence. Moreover, almost 
all these drugs have some side effects like nausea, vomi-
ting, and diarrhea. During their injection, they cross the 
intestines and spread throughout the body with blood, and 
finally cross the blood-brain barrier to produce a curing 
effect (86). Creating nanoparticle drugs can help us to mi-
nimize these side effects in various ways. The surface area 
of nanoparticles is more than their original form. Thus, the 
required quantity for the injection can be minimized. Na-
nocarriers are not dependent on albumin binding for their 
half-lives. Moreover, these nanocarriers can bypass the 
blood-brain barrier by being administered directly intra-
nasally(87).     

Nanotechnology has been used to deliver drugs 
through nanocarriers which are more effective than 
without carriers. The various nanocarriers used to 
treat AD are colloidal polymeric nanoparticles (88), 
phosphorus dendrimers (89), colloidal dispersion of 

lipid nanoparticles (90), microemulsions (91), oil-in-
water nanoemulsions (92), and liposomes(93).  

Donepezil loaded on polymeric nanoparticles (poly-
lactic-co-glycolic acid) showed high concentration uptake 
of donepezil in the brain, which may improve the effect 
of donepezil in AD treatment (88). Nanoparticles in the 
range of 1-100 nm in diameter have been reported to deli-
ver rivastigmine effectively through the blood-brain bar-
rier with fewer side effects (84). Rivastigmine has high 
aqueous solubility and poor penetration due to which high 
doses are required to cure AD. Ferulic acid was entrapped 
in lipid nanoparticles for the AD treatment. The results de-
monstrated that the nanocomplex has higher protective ac-
tivity against AD due to its antioxidant property (90). For 
this reason, microemulsion and mucoadhesive microemul-
sions of rivastigmine were formulated for nasal-to-brain 
delivery (91). The highly branched nature of dendrimers 
has application in the regulation of amyloid fibril deve-
lopment. Phosphorus dendrimers have been reported to 
affect Aβ1-28 peptide and MAP-Tau protein aggregation 
(89). Nanoemulsions have been successfully used for the 
release of phytotherapeutics through the nasal membrane 
for AD treatment (92). Resveratol and curcumin co-encap-
sulated with hyaluronic acid have shown good results for 
the transnasal treatment of AD (88). In a study, the prepa-
ration of curcumin nanoemulsions for intranasal delivery 
has been optimized with the help of Box-Behnken design. 
The optimum formulation has shown successful results 
and did not show in toxicity (94). Galantamine-loaded 
polymeric nanoparticles showed successful results in drug 
delivery of AD treatment because of their biocompatible, 
biodegradability, and safety (95). The creation of complex 
galantamine hydrobromide and chitosan nanoparticles for 
nasal treatment of AD has been reported to not affect the 
efficiency of galantamine hydrobromide(87). Liposomal 
drug delivery has been suggested to have improved drug 
delivery to the brain. The intranasal liposomal formulation 
was found safe and a promising drug delivery mode(93). 

Conclusion
There are ample natural and synthetic compounds avai-

lable for the treatment of AD. Unfortunately, until now, 
there is no permanent cure for AD except for slowing its 
progression. These compounds also have some side ef-
fects, which reduce their effectiveness. To overcome this, 
natural compounds and some novel approaches are new to 
be investigated. Nanotechnology can play a vital role in 
AD treatment. It can be used for the early diagnosis and 
drug delivery system. The above discussion suggests that 

Figure 3. Role of nanotechnology in AD diagnosing.
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nanotechnology is a promising method of drug delivery 
that not only is safe for use but also reduces the amount of 
drug intake. 
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