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Abstract: Obesity among children has emerged as a serious public health problem. The growing prevalence of childhood obesity has led to the appearance of 
serious complications, including a chronic systemic inflammation associated with oxidative stress.  In the present study, we analysed the interaction between two 
genes related with iron metabolism - HFE and haptoglobin – and the plasmatic concentration of glutathione, as a way to evaluate the antioxidant response capac-
ity in obesity. To achieve this, 118 obese children and 89 eutrophic children were recruited for the study. Results showed that although obese children present a 
significantly decreased tGSH levels, once we analysed separately children based on their haptoglobin phenotype, the decreased tGSH levels is significant only for 
the Hp 2 allele. Additionally, Hp 2.2 obese children carrying H63D polymorphism show significantly lower tGSH/GSSG values. Our results found an association 
of haptoglobin and HFE with oxidative stress in childhood obesity.
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Introduction

Obesity is a pathologic condition whose incidence 
increased substantially in the last four decades (1). The 
pathogenesis of this disease is complex and includes 
genetic and environmental factors, as well as their inte-
raction (2). Obesity in childhood, as in adults, causes a 
wide range of serious complications such as diabetes, 
cardiovascular diseases, chronic inflammation and oxi-
dative stress (3–8). 

Glutathione (GSH) is considered the main non-pro-
tein thiol involved in the antioxidant cellular defence, 
being essential for mechanisms of cellular detoxifica-
tion and protection against oxidative attack (9–13). 
Maintaining adequate GSH levels, turnover rates and 
oxidation status are important for a number of critical 
cell functions, and disruptions in these processes are ob-
served in many human pathologies (14, 15). Reduced 
GSH levels are frequently used as a marker for oxida-
tive stress response (14). GSH exists in reduced and 
oxidized forms. In normal conditions, more than 95% 
of total glutathione pool is in the reduced form and less 
than 5% exists in the oxidized form in the cell (16). To-
tal GSH (tGSH) includes reduced GSH and oxidized 
GSH (GSSG - glutathione disulphide). A decrease in the 
tGSH/GSSG ratio is considered indicative of oxidative 
stress. 

Haptoglobin (Hp) is an acute phase protein involved 
in clearing extracellular haemoglobin and regulating in-

flammation (17). Haptoglobin levels are increased dur-
ing inflammation and giving that obesity is an inflamma-
tory condition, Hp is in general amplified in the blood 
of obese people (18). Hp major physiological function 
is to capture and remove free haemoglobin (Hb) from 
plasma, preventing the damage caused by Hb oxidative 
activity. Certainly, one of the problems after intravascu-
lar haemolysis is due to the fact that free Hb is capable 
to pass-through the glomerular filter and damage the 
kidney (19). In addition, free Hb can catalyse the oxida-
tive reactions of LDL and injure the endothelial vascular 
cells (20). Also, the release of iron from the heme group 
will promote the Fenton reaction leading to an oxidative 
overload (21). In fact, the increment of this protein dur-
ing the inflammation condition is probably activated by 
a compensatory mechanism of the antioxidant response 
(22). There are three possible genotypes/phenotypes of 
the Hp protein found in humans: Hp 1.1, Hp 2.1, and 
Hp 2.2. The different Hp genotypes have been shown to 
bind Hb with different affinities, with Hp 2.2 being the 
weakest binder (23). Indeed, others  studies have shown 
that the Hp oxidative protection is phenotype-dependent 
(24–26), with Hp 2.2 presenting a lower antioxidant re-
sponse (24, 25, 27–29). An association of Hp 2.2 with 
elevated levels of inflammatory cytokines was observed 
in obese subjects (30). 

Iron overload leaves a fraction of the iron free, and 
especially its cellular redox-active form, the labile iron 
pool, catalyses the generation of ROS (Reactive Oxy-
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gen Species), leading to oxidative stress (31). Principal 
mechanisms of iron-induced free radical activation are 
Fenton (21) and Haber–Weiss (32) reactions. Others 
authors have demonstrated that the dietary iron in the 
context of genetic obesity, can accelerate the progres-
sion of liver disease because of several factors such as 
inflammation and hepatic oxidative stress (33). Obesity 
is characterized by increased adipose tissue iron con-
tent producing preconditions for adverse effects of iron 
overload (34) . The hemochromatosis gene, HFE, on 
chromosome 6p, encodes the major histocompatibility 
complex MHC class I-like protein HFE that binds beta-
2 microglobulin and regulates iron absorption by modu-
lating the expression of hepcidin, the main controller of 
iron metabolism (35). Defects in this gene are related 
to hereditary hemochromatosis, a disease characterized 
by excessive iron absorption (36). Hemochromatosis 
is primarily associated with the homozygosity for the 
C282Y mutation in the HFE, but another variant in this 
gene, the c.187C>G (rs1799945), known as H63D, that 
is more frequently distributed worldwide, appears to be 
also associated with hereditary hemochromatosis (37) 
and iron metabolism deregulation. 

Others authors’ studies demonstrated the existence 
of Hp gene as a modifier gene in Hemochromatosis (36, 
38–40). Indeed, Hpt  2-2 phenotype was already associ-
ated with an accelerated iron overload (38).

The aim of this work was to gain insight into the role 
of the epistatic relationship between two iron metabol-
ism related genes - Hp and HFE – in the antioxidant 
response capacity in obese children.

Materials and Methods

Subjects
In this work we studied a total group of 118 obese 

children (56 males and 62 females), according to Cole 
cohort, followed up in the Paediatric Department from 
Hospital Santa Maria. Their average age was 12.89 ± 
2.50 years. A total of 89 eutrophic children were used 
as control sampling (40 males and 49 females), with an 
average age of 13.95 ± 0.79 years. During the experi-
ments, some of the data did not achieved  our thresh-
old established for the quality standards and it was de-
cided to exclude them from results, in addition given 
the hospital practises, it was not possible to repeat the 
collection of sample from the same subject. Both cir-
cumstances contributed for the situation of having a 
different number of subjects (n) studied for each vari-
able. The study protocol was approved by the local Ethi-
cal Committee and an informed consent was obtained 
from the guardian of each patient before participation. 

Quantification of plasma tGSH and GSSG concen-
trations 

A spectrofluorimeter Shimadzu RF-5000 was used 
after plasma protein precipitation with 25% (v/v) meta-
phosphoric acid in order to achieve total plasma glu-
tathione concentration. This method is based on that de-
scribed previously by Hissin and Hilf (41)  which uses 
GSH reaction with o-phthalaldehyde 1 mg/mL (OPT) 
in phosphate buffer 0.1 M-EDTA 0,005 M, pH 8 and 
between GSSG and OPT in NaOH 0.1 N, pH 12, in the 
presence of N-ethylmaleimide 0.04M to avoid GSH in-

terference in GSSG quantification. GSH and GSSG ex-
citation and emission spectrums present maximums at 
340 and 430 nm, respectively. Data were expressed as 
means ± standard deviation.

Haptoglobin phenotyping
The Hp phenotype was determined by polyacryla-

mide gel electrophoresis (PAGE). A 10% hemoglobin 
solution in water was prepared from heparinized blood 
by first washing the blood cells five times in phosphate-
buffered saline (0.1 mol/L, pH 7.2) and then lysing the 
cells in 9 mL of sterile water per milliliter of pellet cell 
volume. A supernatant of a cell lysate containing hemo-
globin was aliquoted in 1 or 0.5 mL and stored at -20C. 
Hp phenotyping was determined by gel electrophore-
sis and peroxidase staining, using a modified version 
of the method described previously (42). Briefly, serum 
(20mL) was mixed with 10 mL of the 10% hemoglobin 
solution and 15 mL of 40% saccharose, and the samples 
were left to stand for 5 minutes at room temperature to 
allow the formation of Hp-Hb complexes. The Hp-Hb 
complex was resolved by PAGE using a buffer con-
taining 50 mmol/L Tris base and 384 mmol/L glycine. 
The gel was 14 mL of 40% acrylamide/bis-acrylamide 
in 14 mL of 3 mol//L  Tris-HCl, pH 8.9 and 21 mL of 
bidestilated water. Three hundred and fifty microliters 
of N,N,N′,N′-Tetramethylethylenediamine and 1 mL of 
ammonium persulphate (12 mg/mL) were added to the 
previous solution. After the completion of electrophore-
sis, which was performed at a constant voltage of 250 
for 4 hours, the Hp-Hb complexes were visualized by 
soaking the gel in two freshly prepared staining solu-
tions in a glass tray. The first staining solution contained 
ortho-dianisidine 5 mg/mL in 50% (vol/vol) glacial ace-
tic acid, and the second one was made of 2% (vol/vol) 
hydrogen peroxide. The bands corresponding to the Hp-
Hb complex were readily visible within 15 minutes and 
were stable for more than 48 hours.

Genomic DNA Isolation
Whole blood samples from patients and controls 

were stored with EDTA at −20°C. The genomic DNA 
was isolated through a nonenzymatic method adapted 
from Lahiri and Numberger (1991) method (43).

HFE genotyping
The c.187C>G polymorphism in the HFE gene, cor-

responding to the p.His63Asp variant, was screened in 
DNA samples by a PCR-restriction approach, as previ-
ously described (44). PCR was carried out in 25 μL re-
action volume, containing 1 μL (≈ 90 ng) of the genomic 
DNA template and 1 μL (20 pmol) of each of sense and 
antisense primers: 5′-ACA TGG TTA AGG CCT GTT 
GC-3′ and 5′-CTT GCT GTG GTT GTG ATT TTC C -3′ 
(primers from Metabion, Germany). These primers am-
plify a fragment with 294 bp that was then restricted by 
Mbo I (enzyme from New England Biolabs, Germany). 
The PCR program included a step of 94 °C, for 5 min 
followed by 30 cycles of denaturation at 94 °C for 30 
s, annealing at 58 °C for 30 s and extension at 72 °C 
for 30 s. An additional extension step was performed in 
the final at 72 °C for 5 min. To improve clarity, we will 
henceforward use the protein change (H or D) as a sur-
rogate for genotype. 
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and tGSH levels or tGSH/GSSG ratio in eutrophic chil-
dren (p=0.135 and p=0.226, respectively; Table 2).

Regarding HFE gene, were analysed the 16 eutrophic 
and 86 obese children that presented values for the three 
variables  - tGSH or tGSH/GSSG and Hp phenotype. 
No significant difference between H63D genotypes and 
tGSH levels or tGSH/GSSG ratio in obese (p=0.337 
and p=0.272 respectively; Supplementary table 1) or 
eutrophic children (p=0.337 and p=0.376, respectively; 
online resource 3) was observed. However, we found 
that obese children carrying the G allele (H63D vari-
ant) and the Hp 2.2 genotype show a lower tGSH/GSSG 
value (p=0.037) and a trend to decreased tGSH levels 
(p=0.079). No significant differences were found in eu-
trophic children. These results are shown in Table 3.

Discussion

Obesity is now among the most widespread medi-
cal problems affecting children in developed countries. 
Childhood obesity represents one of the greatest health 
challenges by increasing the child's risk of numerous 
medical conditions, such as hypertension and diabetes 
in children and increases the risk of early cardiovascular 
disease in adults.

Aiming to study how the haptoglobin phenotype and 
the H63D polymorphism in the HFE gene could medi-
ate the antioxidant response capacity to the inflamma-
tory process in obese children we determined the tGSH 
and tGSH/GSSG levels in a group of well-characterized 
children. Diverse studies have shown that oxidative 

Statistical analysis
Differences between the two groups of children were 

tested by the χ2 for discrete variables and T test (para-
metric test)/ Mann-Whitney test (non-parametric test) 
for continuous variables. The comparisons within the 
groups were performed using T test/ ANOVA parametric 
tests or Mann-Whitney/ Kruskal-Wallis non-parametric 
tests. All tests were performed with SPSS 24.0 software. 
Statistical significance was defined as a p-value < 0.05.

Results

Plasma tGSH levels were determined in 91 obese 
children and compared to those obtained in 51 eutrophic 
children. Although tGSH/GSSG ratio does not present 
significant differences (p=0.173), tGSH levels are sig-
nificantly decreased in obese children (p <0.001) (Table 
1).

Forty-four eutrophic and 107 obese children were 
analysed for the Hp phenotype and 29 eutrophic and 
114 obese children for H63D genotype.   No significant 
difference was found between the two populations re-
garding Hp phenotypes or H63D genotypes (p=0.510 
and p=0.504, respectively; Table 1). However, after 
analysing the 33 eutrophic and 88 obese children that 
presented values for both  tGSH or tGSH/GSSG and Hp 
phenotype, obese children with Hp 2 allele present sig-
nificantly decreased of tGSH levels (p=0.015; Table 2). 
These children also have a trend to present lower tGSH/
GSSG ratio (p=0.074). On the other hand, there is no 
significant difference between the haptoglobin genotype 

Control Obese p-value
tGSH (μmol/L) a 48.78±13.95 (51) 33.06±14.63 (91) <0.001
tGSH/GSSG b 8.31; 4.74 – 24.93 (51) 7.84; 2.49 – 16.79 (91) 0.173
Hp phenotype c

1.1 5.30 (8) 7.95 (12)
0.5102.1 13.91 (21) 37.75 (57) 

2.2 9.93 (15) 25.16 (38)
H63D c

HH 13.99 (20) 49.65 (71)
0.504

HD/DD 6.29 (9)  30.07 (43)
a Mean ± standard deviation (n). b Median; minimum – maximum (n). c % (n).

Table 1. Comparisons of tGSH (μmol/L), tGSH/GSSG, Hp phenotypes and HFE genotypes  between controls and obese children.

Population Parameter Hp 1.1 Hp 2.1 Hp 2.2 p-value

Control
tGSH (μmol/L) a 56.46 ± 16.66 (6) 42.10 ± 14.11 (13) 46.98 ± 12.92 (14) 0.135
tGSH/GSSG b 9.76; 6.77 – 11.53 (6) 7.61; 4.74 – 10.03 (13) 8.43; 5.11 – 24.93 (14) 0.226

Obese
tGSH (μmol/L) a 43.80 ± 13.99 (10) 32.49 ± 13.64 (47) 28.89 ± 13.94 (31) 0.015
tGSH/GSSG a 9.42 ± 3.44 (10) 8.18 ± 2.74 (47) 7.16 ± 2.78 (31) 0.074

Table 2. Comparisons of tGSH (μmol/L) and tGSH/GSSG between  Hp phenotypes, in controls and obese children.

a Mean ± standard deviation (n). b Median; minimum – maximum (n).

Population Parameter  Hp 2.2 - HD/DD - absence Hp 2.2 - HD/DD – present p-value

Control
tGSH (μmol/L) a 46.18 ± 12.80 (13) 50.30 ± 14.37 (3) 0.629
tGSH/GSSG b 8.42; 5.11 – 24.93 (13) 7.53; 7.51 – 10.29 (3) 1.000

Obese
tGSH (μmol/L) a 33.60 ± 14.14 (74) 25.71 ± 15.07 (12) 0.079
tGSH/GSSG b 8.23; 3.70 – 14.26 (74) 6.41; 2.49 – 16.79 (12) 0.037

a Mean ± standard deviation (n). b Median; minimum – maximum (n).

Table 3.  Comparisons of tGSH (μmol/L) and tGSH/GSSG between the presence of Hp 2.2-HD/DD and the absence of   Hp 2.2-
HD/DD, in controls and obese children.
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stress is increased in obese adult (45, 46) and children 
(47–49) and may be associated with the development 
of co-morbidities in this disease. In this study, we evi-
denced a depletion of tGSH in obese children, which is 
consistent with some previous studies that relate GSH 
to obesity (50–53). In fact, glutathione plays a crucial 
role in the defence against free radicals. Its depletion 
may lead to a cascade of harmful reactions ultimately 
culminating in oxidative stress in obese children. 

The fact that we did not observe significant differ-
ences between Hp phenotypes among obese children 
and controls, allows us to conclude that Hp phenotype 
is not a predisposing factor to childhood obesity. How-
ever, it is verified that obese children with Hp 2.1 and 
Hp 2.2 present significantly decreased tGSH levels and 
also have a trend to present lower tGSH/GSSG ratio. 
Previous studies have shown a relation between Hp 2 
or Hp 2.2 and oxidative stress in other diseases (28, 54, 
55). It also has been reported that individuals with the 
haptoglobin 2.2 present increased iron concentrations 
(38, 39, 56). As a matter of fact, Hp alleles differ in their 
ability to clear free Hb from the plasma where Hp 1-Hb 
complexes are cleared more efficiently from the plasma 
than Hp 2-Hb complexes (26), thus subjects with Hp 
2.2 are more susceptible to oxidative stress. Our results 
suggest that obese children with Hp 1.1 may be better 
protected against oxidative lesions resulting from the 
inflammatory process and are in accordance with Hp 1 
higher binding affinity for hemoglobin and the conse-
quent decreased oxidative reactions catalyzed by the Hb 
iron.  

We did not observe significant differences between 
HFE among obese children and controls. Also, there is 
no significant difference concerning the HFE genotypes 
and levels of total plasma GSH and ratio tGSH/GSSG in 
obese children. These results lead us to suggest that this 
genotype is not a predisposing factor for the disease and 
that the H63D polymorphism in the HFE gene alone is 
not associated with the tGSH and the tGSH/GSSG ratio. 
However, the association between the H63D variant and 
the Hp 2.2 genotype in obese children is related with 
lower levels of tGSH/GSSG, as well as with a trend to 
present a decrease in the tGSH level. The H63D vari-
ant in HFE gene, is mainly investigated as a modulator 
in several diseases (57–61). It appears to be associated 
with a milder iron overload (62, 63). Thus, giving that 
H63D affects the structure of the HFE protein, we pro-
pose that carriers of this mutation will be more suscepti-
ble to iron overload which may promote oxidative stress 
by increasing the steady-state concentration of interme-
diate oxygen radicals. 

The results of this study suggest that the association 
between the H63D variant, possibly responsible for the 
increased accumulation of plasma iron, and the phe-
notype of haptoglobin 2.2, with lower binding affinity 
to the heme group, seems to lead to a decrease in the 
tGSH/GSSG ratio and tGSH. Due to the excessive ac-
cumulation of iron in plasma and the lower antioxidant 
capacity of the Hp 2.2 phenotype, the Fenton reaction is 
more likely to occur, leading to increased ROS genera-
tion and consequently oxidant overload.

Our findings indicate an epistatic association be-
tween haptoglobin and HFE genes in the process of oxi-
dative stress in childhood obesity. Indeed, genetic inter-

actions between different loci have been thought to be 
of major importance in complex phenotypes. However, 
further studies investigating the role of other genetic 
variants and other markers for oxidative stress will be of 
high importance. In addition, functional studies are re-
quired to understand the functional association between 
the genetic variants, oxidative stress and the develop-
ment of obesity. These investigations may provide new 
insights into the mechanisms underlying this pathologic 
condition whose incidence increased substantially in the 
last decades.
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