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Abstract: Resistance to antibiotics is an emerging and growing threat. To address this threat, attempts are being made by researchers to identify the Volatile 
Organic Compounds (VOCs) of bacteria. It is believed that unique combinations could be found among the VOCs produced by each microorganism. The current 
study aimed to identify and compare the VOCs of antibiotic-resistant and standard strains of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, 
Acinetobacter baumannii and Klebsiella pneumoniae. A polymer of divinylbenzene /carboxen /polydimethylsiloxane was applied for absorption of volatile com-
pounds in headspace bacterial samples in form of a solid phase micro-extraction fiber holder. Gas chromatography-mass spectrometry technique was used for 
identification of volatile compounds. The analysis of the VOCs indicated that some VOCs appeared only in standard strains while others were common only among 
resistant strains. Exclusive VOCs to a specific strain were also detected. This study demonstrated that resistant strains of bacteria produced VOCs that were dif-
ferent from those of the standard strains. In addition, VOCs released by bacteria after passing the logarithmic growth phase showed no significant differences. The 
identification of VOCs can be a precise way to differentiate bacterial species, also it can be said that the VOCs produced by different pathogenic microorganisms 
can be the suitable biomarkers for their detection.
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Introduction

The development of resistance to common antibio-
tics used for the treatment of pathogenic bacteria has 
caused important health care problems worldwide (1-
3). Antimicrobial agents have become ineffective or less 
effective in treating  microbial infections (4). Antibiotic 
resistance is a growing threat and the resulting mortality 
and morbidity are not limited to specific geographical 
locations (5). Resistant bacteria include both Gram-po-
sitive and Gram-negative types (4-6). The most impor-
tant resistant Gram-negative bacteria are Klebsiella 
pneumoniae, Acinetobacter baumannii, Pseudomonas 
aeruginosa and Escherichia coli (7). Staphylococcus 
aureus is the most common resistant Gram-positive 
bacteria (8).

Diagnosis and differentiation of pathogenic bacteria 
in a short time is the most important step in the treat-
ment of infections (9). Much effort has been devoted 
to designing accurate and rapid diagnostic methods that 
can differentiate the causative agent of infections (10). 
In recent years, researchers have endeavored to identify 
the volatile organic compounds (VOCs) of bacteria (11-
14). It is believed that for each microorganism, a unique 
VOC profile can be found (15-16). Scientists are hoping 
to use this feature in designing a quick and accurate 
method for bacterial identification (11, 17). Among the 

various methods that have been used to identify VOCs 
(13, 18-20), Gas Chromatography-Mass Spectrometry 
(GC-MS) is used extensively (21-23).

The method of VOCs extraction differs by the tech-
nique used to identify the organic compounds (17, 24-
26). Solid Phase Micro-Extraction (SPME) is an impor-
tant method of collecting the VOCs of microorganisms 
for identification by GC-MS. The advantages of SPME 
include its quick extraction process, its simplicity and 
usually does not require solvents (27-28).

The current study aimed to identify and compare 
the VOCs of five prevalent resistant bacteria (E. coli, 
S. aureus, P. aeruginosa, A. baumannii and K. pneumo-
niae) with their standard strains using SPME for extrac-
tion and GC-MS for detection. In the end, the exclusive 
VOCs that can be used as biomarkers to distinguish re-
sistant species from non-resistant bacteria will be intro-
duced.

Materials and Methods

Bacterial strains
The standard strains of E. coli (ATCC 25922), S. au-

reus (ATCC 25923), P. aeruginosa (ATCC 27853), A. 
baumannii (ATCC 19606) and K. pneumoniae (ATCC 
700683) and an antibiotic-resistant strain of each spe-
cies were evaluated. All resistant strains were isolated 
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from clinical samples and identified by species-specific 
polymerase chain reaction (PCR) and routine bacterio-
logical testing (data not shown). A stock of each strain 
was prepared using nutrient broth containing 15% (v/v) 
glycerol kept at -80 °C. 

Susceptibility tests 
The minimum inhibitory concentration (MIC) of dif-

ferent types of antibiotics (for non-standard strains or 
antibiotic-resistant strains) was determined according to 
the guidelines of the Clinical and Laboratory Standards 
Institute (CLSI) (29). In brief, serial double dilutions 
of the antibiotics were prepared in 96-well trays using 
Mueller Hinton broth (MHB) medium as the diluents 
at a concentration of 0.25-512 µg/ml. The inoculants 
of the microbial strains were prepared in sterile normal 
saline from freshly-cultured bacteria and adjusted to 0.5 
McFarland standard turbidity. Inoculants were further 
diluted (1:100) using MHB medium just before addition 
to the serial diluted samples. The trays were incubated 
for 20 h at 37 °C and the MIC values were recorded 
as the lowest concentrations that could inhibit visible 
growth of microorganisms. The sensitivity and resis-
tance of studied non-standard species to antibiotics are 
presented in Table 1.

Extraction of headspace
All bacterial strains were cultured in nutrient agar 

plates and then one isolated colony was sub-cultured 
onto 30 ml tryptic soy broth (TSB) in 100 ml glass 
bottles and incubated at 37 °C, with agitation at 150 rpm 
(30). The headspace of each strain was extracted at 2, 4 
and 24 h. A suspension of microorganisms at OD600~0.5 
was used for the initiation of each experiment (31) and 
the corresponding sterile broth mediums were assessed 
as blank samples (28). In the headspace experiments, 
volatile compounds were absorbed using A SPME fiber 
holder (57330-U; Sigma-Aldrich) with a fiber coated 
with divinylbenzene /carboxen /polydimethylsiloxane 
(DVB /CAR /PDMS) 50/30 µm (57328-U; Sigma-
Aldrich). To improve the absorption of VOCs, after the 
incubation time, 2 ml of 36% NaCl was added to each 
sample. The DVB/CAR/PDMS fiber was suspended 
from the top of the bottle containing the culture and then 
placed on a magnetic stirrer hotplate at 70 °C for 30 min 
(30). After extraction, the SPME fiber was transferred to 

the injection part of the GC-MS and the extracted VOCs 
was desorbed from the fiber into a chromatography co-
lumn. For thermal desorption, the SPME fiber remained 
in the injector for 2 min before it was exposed to the 
headspace of the bacterial samples (27). Each state was 
tested at least three times.

GC-MS analysis of volatile compounds 
A trace GC-MS system (Thermo Quest-Finnigan) 

equipped with a DB-5 column (60 m in length, 0.25 mm 
inner diameter and 0.25 μm film thickness) was used to 
study the bacterial VOCs using helium carrier gas at a 
flow rate of 1.1 ml/min. The starting temperature was 
50 °C which was increased at a rate of 10 °C/min to 
250 °C. The GC-MS was set in split-less mode and a 
quadrupole ion trap with ionization energy of 70 eV was 
used in the filament.

The VOCs were identified using the National Ins-
titute of Standards and Technology (NIST) reference 
library. To analyze the GC-MS data, Xcalibur 3.0 with 
Foundation 3.0 SP2 software (Thermo-Fisher Scienti-
fic) was used and the Kovats retention index (RI) was 
calculated for each chromatographic peak. The NIST 
17 mass spectral library (NIST17/2017/EPA/NIH) was 
used to identify each compound according to its RI. 
Sample studies were conducted by a Phytochemistry 
specialist to define each of the detected compounds as 
organic.

Statistical analysis
All statistical analyses were performed using SPSS 

version 24.0. To evaluate the differences between 
groups, Mann-Whitney test was used. A p-value of less 
than 0.05 was considered statistically significant.

Results

GC-MS Chromatograms of volatile compound
The headspaces of all bacterial strains (five resistant 

and five standard strains) were extracted by SPME and 
injected into the GC-MS at 2, 4 and 24 hours after cul-
turing. The chromatograms of extracted VOCs from 24 
h cultures are presented in Figure 1. As shown in these 
chromatograms, after 24 h incubation, VOC profiles of 
all resistant strains were totally different from the cor-
responding standard strains.

E. coli S. aureus P. aeruginosa A. baumannii K. pneumoniae

Resistant to

Cephalotin
Cefazolin

Ciprofloxacin
Ofloxacin

Tetracyclin
Nalidixic acid

Amikacin
Sulfamethoxazole 

Trimethoprim 
Gentamicin 
Ceftazidime
Ceftriaxon

OxacilinCefoxitin
Ceftriaxon 

Ciprofloxacin 
Sulfamethoxazole 

Trimethoprim 
Tetracyclin 

Erythromycin 
Clotrimazol

Ciprofloxacin 
Sulfamethoxazole 

Trimethoprim 
Gentamicin 
Amikacin

Imipenem
Ceftriaxone

Sulfamethoxazole  
Trimethoprim
Cefotaxime
Ceftazidime
Tetramycin

Ciprofloxacin
Gentamicin
Amikacin

Tobromycin

CephalotinCefazolin
Ciprofloxacin

Ofloxacin
Tetracyclin

Nalidixic acid
Amikacin

Sulfamethoxazole 
Trimethoprim 
Gentamicin 
Ceftazidime
Ceftriaxon

Sensitive to Nitrofurantoin Rifampicin
Chloramphenicol

Ceftazidime
Colistin Colistin Colistin

Table 1. Antibiotic susceptibility pattern of assessed resistant bacteria.
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The detected VOCs of studied strains
All identified VOCs from E. coli, S. aureus, P. aeru-

ginosa, A. baumannii and K. pneumoniae (in both resis-
tant and standard strains) are presented in Table 2. The 
mean of pick area (%) ±SD for each compound which 
has been produced by the assessed bacteria, regardless 
of the type of strain and the time of assay (2, 4 and 24 h), 
are shown in the separate columns. Also the frequency 
of producer strains of each mentioned volatile com-
pound are shown. According to the data demonstrated 
in Table 2, the main differences in VOC profile between 
resistant and standard strains of assessed bacteria can 
be seen.

Common VOCs produced by different strains
From the results of analysis of the recognized 

VOCs, some were produced by both standard and re-
sistant strains and were common among some bacteria. 
These included for example 4-t-butyl-2-(1-methyl-2-ni-
troethyl) cyclohexane, 2,5-(1,1-dimethylethyl)-phenol 
and 2,3-pentandione. Some detected VOCs were pro-
duced only by assessed standard strains. These included 
1-(1,5-dimethyl-4-hexyl-4-methyl-benzene, 1,2-buta-
diyene, 1,3-heptadiene-3-yne, 2,6-dibutyl-2,5-cyclo-
hexadiene-1,4-dione, 2h-tetrazole-5-carboxylicacid2-
phenyl, 2-methyl tetradecane, 3-propionyloxypentadec-
ane, caryophyllene, cis-dihydro-α-terpinyl acetate, 
cyclohexene, 4-ethenyl, decene, dimethyl sulfone, ethyl 
butanoate, levomenthol, methyl isopropyl hexenal and 
α-acetoxydihydrocoumarin. In addition, some identified 
VOCs were produced only by resistant strains. These 
included 1-(1-hexyl)-cyclohexanol, 1,2-benzenedi-
carboxulic acid, 1,8-cineole, 10-methylnonadecane, 
1-naphtalenol, 2,4,5-trimethyl benzeneamine, 2-methyl 
naphtalene, 2-methyy-5-(1-methylethyl)-phenol, 2-pi-
peridinone, 2-undecanol, 2-undecanone, 3-methyl-pen-
tadecane, 4-butoxy-1-butene, 5-methyl-pentadecane, 
7-methoxy-6-ethoxy-2,2-dimethyl-2-chromene, aceto-
phenone, caryolan-8-ol, curcumene, cyclohexane pro-
panol, decyl-cyclohexane, hexadecane, indolizine, iso-
cyanomethyl benzene, nonadecane, o-isopropylanisol, 
selinene, styrene and tetradecanal (Table 2).

Uncommon VOCs produced by different strains
The VOCs exclusively produced by resistant E. coli 

were 1-(1,1-dimethylethyl)-cyclohexane, 1-dodecane, 
2-nonanone, 4-decene, 5-decene-1-ol, 6-dodecane, al-
loaromadendrene, docosane and sesquiesabinene. The 
VOCs exclusively produced by standard E. coli were 
decanol, 2-acetyl-1-pyrroline, dodecanol, indole and 
phenyl ethyl pyrrole (Table 2). Although indole was 
produced by other studied bacteria, it was released in 
much higher amounts by standard E. coli than by P. ae-
ruginosa, A. baumannii, K. pneumoniae and S. aureus.

While the VOCs exclusively produced by resistant S. 
aureus were benzaldehyde, dimethyl octenal, epicedrol, 
decane and nerylacetone, particular VOCs of standard 
S. aureus were 1-decyne, 1-penten-3-ol, 2,5-dimethyl 
pyrazine, 2-ethyl hexanol, allylbutylhydroquinone and 
benzene acetaldehyde. Dodecane was produced by both 
the resistant and standard S. aureus (Table 2).

The VOCs produced exclusively by resistant P. ae-
ruginosa were 1-phenyl-ethanone, 1-undecenone, ce-
drene, limonene, sesquiphellandrene and α-terphenyl 

Figure 1. GC-MS Chromatograms of VOCs of 10 studied strains 
after 24h growth Distinct VOC profiles were obtained for each 
bacterial species belongs to resistant or standard groups. R.E.C: 
Resistant E. coli, S.E.C: Standard E. coli, R.S.A: Resistant S. au-
reus, S.S.A: Standard S. aureus, R.P.A: Resistant P. aeruginosa, 
S.P.A: Standard P. aeruginosa, R.A.B: Resistant A. baumannii, 
S.A.B: Standard A. baumannii, R.K.P: Resistant K. pneumoniae 
and S.K.P: Standard K. pneumoniae
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Resistant Strains Standard Strains
VOCs Mean ± SD1 N2 Strain3 Mean ± SD4 N5 Strain6

(E)-2-hexyl ester- Butanoic acid 2.76 ± 2.18 3
E.c (24h), P.a (2h), A.b 

(2h)
3.06 ± 2.29 5

E.c(2h), A.b (2h), K.p 
(2,4,24h)

(z)-2-Octene-1-ol 1.39 ± 1.25 4
P.a (4,24h), A.b(4h), K.p 

(24h)
1.69 ± 1.47 2 K.p (2,4h)

(z)-4-Decan-1-ol 1.81 ± 1.5 3 E.c (2,4,24h) 3.18 ± 0.1 2 K.p (4,24h)
1-(1-hexyl)-cyclohexanol 1.13 ± 0.9 3 S.a (2,24h), A.b (2h) - 0 -

1-(1,1-dimethylethyl)-cyclohexane 3.52 ± 0.7 3 E.c (2,4,24h) - 0 -
1-(1,5-dieethyl-4-hexyl)-4-methyl-

Benzene
2.62 1 A.b (4h) - 0 -

1-(1,5-dimethyl-4-hexyl-4-methyl-
Benzene

- 0 - 2.08 ± 2.02 3
E.c (2h), P.a (2h), A.b 

(2h)
1-Decene 13.71 ± 21.76 3 K.p (2,4,24h) - 0 -

1-Dodecane 3.58 ± 3.32 2 E.c (4,24h) - 0 -
1-Methoxy-2-propanol - 0 - 2.65 1 P.a (4h)

1-methyl-4-(1-methylethyl)-
Cyclohexanol

1.93 ± 0.88 2 K.p (2h,4h) - 0 -

1-Naphtalenol 3.11 ± 0.48 4 E.c (4,24h), - 0 -
1-Penten-3-ol - 0 - 6.14 1 S.a (2h)

1-phenyl ethanone 16.97 ± 4.61 2 E.c (2h), P.a (2h) - 0 -
1-Undecenone 14.53 ± 8.08 2 P.a (4,24h) - 0 -

1,2-Benzenedicarboxulic acid 1.61 1 P.a (4h) - 0 -

1,2-Butadiyene - 0 - 3.96 ± 1.89 7
S.a (2,4,24h), P.a 

(4,24h), A.b (4,24h)

1,3-Butadiyene 1.74 ± 1.81 7
S.a (24h), P.a (2,4,24h), 

K.p (2,4,24h)
1.33 ± 0.74 2 K.p (2,4h)

1,3-Heptadiene-3-yne - 0 - 8.17 ± 8.25 5
K.p (2,24h), S.a (2h), 

P.a (2h), A.b(2h)

1,5-Decadiene 0.93 ± 0.58 5
E.c (2h), P.a (4,24h), A.b 

(2h), K.p (2h)
1.86 ± 0.66 2 K.p (4,24h)

1,8-cineole 6.83 ± 4.46 11
E.c (2,4,24h), S.a (2,42h), 
P.a (2), A.b (4,24h), K.p 

(2,4h)
- 0 -

1,9-Decadiene 0.93 ± 0.46 7
E.c (4h), S.a (4,24h), P.a 
(2,24h), A.b (24h), K.p 

(4h)
1.77 1 K.p (4h)

10-Methylnonadecane 0.3 1 A.b (2h) - 0 -

2-(phenylmethylene)-Octanal 1.1 ± 0.63 3
A.b (2h), K.p (4h), S.a 

(24h)
0.36 1 K.p (4h)

2-Acetyl-1-pyrroline - 0 - 14.39 ± 12.23 5
P.a (4h), A.b (4,24h), 

E.c (4,24h)

2-Decanone 1.73 ± 1.9 9
E.c (2,4,24h), S.a (2,24h), 
A.b(2,4,24h), K.p (24h)

- 0 -

2-Decenal - 0 - 1.26 1 A.b (24h)

2-ethenyl-6-methyl-Pyrazine 2.01 ± 1.7 7
K.p (24h), S.a (4,24h), 
P.a (4h), A.b (2,4,24h)

4.96 ± 4.79 7
K.p (2,4,24h), E.c 
(2h), S.a (2h), P.a 

(2h), A.b (2h)
2-Ethyl hexanol - 0 - 1.69 ± 0.9 2 S.a (2,4h)

2-Heptanone 0.95 ± 0.42 8
A.b (4,24h), K.p (2,24h), 

E.c (2,24h), S.a (2,4h)
1.02 ± 0.97 4

P.a (2h), E.c (4,24h), 
S.a (2h)

2-Hexan-1-ol 1.98 ± 1.75 7
S.a (4,24h), A.b (4,24h), 

K.p (2,4h), E.c (24h)
- 0 -

2-methyl Naphtalene 0.94 ± 0.36 6
S.a (4,24h), P.a (4,24h), 

A.b (24h), K.p (24h)
- 0 -

2-Methyl tetradecane - 0 - 1.74 ± 0.95 4
P.a (4,24h), A.b 

(4,24h)

2-methyl-1-propanol 0.96 ± 0.46 3
K.p (24h), E.c (24h), A.b 

(24h)
2.66 ± 2.02 3 P.a (4,24h), A.b (24h)

2-methyl-2-Undecanethiol - 0 - 6.06 1 K.p (24h)
2-methyl-5-(1-methylethyl)-Phenol 2.23 ± 0.88 2 S.a (4h), A.b (4h) - 0 -

Table 2. The identified VOCs in studied bacteria (standard and resistant strains).
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2-nonanone 22.37 ± 12.61 5 K.p (2,4h), E.c (2,4,24h) - 0 -
2-octyl-1-ol 0.55 1 E.c (24h) 1.69 1 K.p (24h)

2-Piperidinone 2.54 ± 1.48 2 S.a (2h), A.b (2h) - 0 -
2-tridecanone 3.8 ± 0.3 2 K.p (2,4h) - 0 -

2-Undecanol 1.94 ± 1.58 7
K.p (24h), S.a (4, 24h), 
P.a (4,24h), A.b (4h,24)

- 0 -

2-Undecanone 3.23 ± 1.9 7
A.b (2,24h),K.p (2,24),

E.c (2,4,24h)
- 0 -

2,3-Hexandione 0.94 ± 0.46 9
A.b (2,4h), K.p (2,4h), 

E.c (2,4h), S.a (2,4h), P.a 
(24h)

1.46 1 K.p (4h)

2,3-Pentandione 1.3 ± 0.73 9
K.p (24h), E.c (24h), S.a 
(2,4,24h), P.a (2,4,24h), 

A.b (2h)
12.05 ± 10.48 11

K.p (4,24h), E.c 
(2,24h), S.a (4,24h), 

P.a (4,24h), A.b 
(2,4,24h)

2,4,5-trimethyl Benzeneamine 1.09 ± 0.36 4 A.b (4,24h), K.p (2,4h) - 0 -

2,5-(1,1-dimethylethyl)-Phenol 1.64 ± 1.09 6
K.p (24h), S.a (4,24h), 
P.a (24h), A.b (2,4h)

1.15 ± 0.77 6
K.p (2,4,24h), E.c 
(2h), P.a (2h), A.b 

(2h)

2,5-dimethyl Pyrazine - 0 - 8.65 ± 8.82 4
K.p (2,4h), S.a (2),

A.b (2h),
2,6-bis(1,1-dimethylethyl)-4-methyl-

phenol
- 0 - 18.37 ± 10.68 2 K.p (2, 24h)

2,6-dibutyl-2,5-cyclohexadiene-1,4-
dione

- 0 - 1.44 ± 1.34 2 P.a (2h), A.b (2h)

2,6,10-trimethyl-Pentadecane 2.03 ± 0.27 2 A.b (4,24h) 5.48 1 K.p (24h)
2H-Tetrazole-5-carboxylicacid, 

2-phenyl
- 0 - 2.54 ± 1.39 3

P.a (24h), A.b (24h), 
K.p (4h)

3-(3,3-dimethylbutyl)-Cyclohexanone 0.83 1 A.b (24h) - 0 -
3-decen-1-ol 6.47 ± 3.37 2 K.p (2,4h) - 0 -

3-Methyl-1,5-heptadiene 2.3 ± 1.19 7
E.c (2h), S.a (2,4h), P.a 

(2h), A.b (2,4,24h)
2.54 ± 0.72 4

K.p (2,4,24h), A.b 
(2h)

3-methyl-Pentadecane 0.92 1 P.a (4h) - 0 -

3-Propionyloxypentadecane - 0 - 1.24 ± 0.78 7
A.b (2h), K.p 

(2,4,24h), E.c (2h), 
S.a (2h), P.a (2h)

3-Undecanone 0.17 1 K.p (2h) - 0 -
3-Undecene-2-one 2.15 ± 0.6 2 K.p (2,4h) - 0 -

4-Butoxy-1-Butene 1.16 ± 0.73 5
K.p (4h), S.a (4h),

A.b (4,24h), K.p (2h)
- 0 -

4-Decene 4.8 1 E.c (4h) - 0 -

4-t-butyl-2-(1-methyl-2-nitroethyl)
cyclohexane

3.17 ± 2.45 4
S.a (24h), P.a (2h), A.b 

(2,4h)
4.5 ± 2.4 7

S.a (2h), P.a (2h), E.c 
(2h), A.b (2h), K.p 

(2,4,24h)
5-Decene-1-ol 3 1 E.c (2h) - 0 -

5-methyl-Pentadecane 1.46 ± 0.37 2 P.a (2h), E.c (2h) - 0 -

5,8-Diethyl-6-dodecanol 1.09 ± 0.32 6
E.c (24h), P.a (2,4,24h), 

K.p(4,24h)
- 0 -

5.5-Dodecadinyl-1, 12-diol - 0 - 15.72 1 K.p (4h)
6-Dodecane 2.46 ± 1.54 2 E.c (4,24h) - 0 -

6-Methyl-5-hepten-2-one 0.61 ± 0.21 7
P.a (4,24h), K.p 

(2,4,24h), E.c (2,4h)
2.43 1 K.p (2h)

7-methoxy-6-ethoxy-2,2-dimethyl-2-
chromene

1.13 ± 0.56 5
S.a (4h), A.b (2,4h), K.p 

(2,24h)
- 0 -

Acetophenone 16.21 ± 4.41 12
E.c (4,24h), S.a (2,4,24h), 
P.a (4,24h), A.b (2,4,24h), 

K.p (2,4h)
- 0 -

Alloaromadendrene 1.1 1 E.c (2h) - 0 -
Anisol - 0 - 1.19 1 S.a (2h)

Aromadendrene 5.12 1 A.b (24h) - 0 -

Benzaldehyde 9.33 ± 11.39 6
S.a (2,4,24h), A.b 

(2,4,24h)
6.9 ± 5.54 2 S.a (2h), A.b (2h)

Benzene acetaldehyde - 0 - 7.04 1 S.a (2h)
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Benzophenone 1.75 ± 1.33 8
S.a (4,24h), P.a (24h), 

A.b (2,24h), K.p (4,24h), 
E.c (4h)

- 0 -

Butyraldehyde 0.42 ± 0.1 2 S.a (2,24h) 2.92 ± 1.52 5
S.a (24h), P.a (4h),

K.p (2,4,24h)

Cadinene 1.14 ± 0.97 6
K.p (24h), E.c (24h), 

S.a (24h), P.a (4h), A.b 
(4,24h)

0.63 1 K.p (24h)

Carbamic acid 2.42 ± 1.4 7
K.p (24h), S.a (4,24h),P.a 

(2,4h), A.b (2,24h)
0.98 1 K.p (4h)

Caryolan-8-ol 0.95 ± 0.52 3 S.a (4h), A.b (2,4h) - 0 -

Caryophyllene - 0 - 3.02 ± 2.65 7
A.b (4,24h), E.c 

(24h),S.a (4,24h), P.a 
(4,24h)

Cedran-1,8-diol 1.51 ± 0.58 6
K.p (2,4,24h), S.a 
(2,24h), P.a (2h)

1.28 ± 0.27 5
K.p (2,4h), S.a (2h),

P.a (2h), A.b (2h)
Cedrene 0.67 1 P.a (24h) - 0 -

Cedrol 1.96 ± 1.5 9
P.a (24h), A.b (2h), K.p 

(2,4,24h), E.c (4,24h), S.a 
(2,24h)

1.4 1 S.a (2h)

cis-Dihydro-α-terpinyl acetate - 0 - 17.41 ± 15.52 7
P.a (4,24h), A.b 

(4,24h), E.c (24h), S.a 
(4,24h)

Curcumene 1.9 ± 0.54 2 E.c (2h), P.a (24h) - 0 -

Cyclohexane propanol 1.69 ± 1.25 6
A.b (4,24h), E.c (4h), P.a 

(2,4,24h)
- 0 -

Cyclohexene 4-ethenyl- - 0 - 4.44 ± 3.21 6
S.a (2,4,24h),

A.b (4,24h), K.p (2h)
Decane 6.07 ± 3.33 3 S.a (2,4h), A.b (24h) - 0 -
Decanol - 0 - 0.93 1 E.c (2h)

Decyl-Cyclohexane 1.19 ± 1.44 10
E.c (2,24h), S.a (24h), P.a 
(2,4,24h), A.b (4h), K.p 

(2,4,24h)
- 0 -

Dibutylphatalate 0.58 ± 0.27 3
P.a (24h), S.a (4h),

A.b (4h)
1.57 ± 1.11 6

S.a (2h), P.a (2h), E.c 
(2h), A.b (2h), K.p 

(4,24h)
Dimethyl cyclo hexa-1,3 dine 0.73 1 A.b (24h) - 0 -

Dimethyl Octenal 3.09 ± 2.71 2 S.a (2,4h) 2.39 1 S.a (2h)
Dimethyl sulfone - 0 - 8.39 ± 3.12 3 P.a (4,24h), A.b (4h)

DimethylethylCyclohexanol 1.15 ± 0.4 6
P.a (4h), A.b (2,24h), K.p 

(24h), S.a (4,24h)
1.42 ± 0.99 3 K.p (2,4h), S.a (2h)

Docosane 1.5 ± 0.21 3 E.c (2,4,24h) - 0 -
Dodecane 2.85 1 S.a (24h) 1.96 1 S.a (2h)
Dodecanol - 0 - 0.27 1 E.c (2h)
Dodecenal 0.56 1 S.a (24h) 8.29 ± 10.87 3 K.p (2,4,24h)
Dodecenol 4.71 ± 3.61 3 A.b (2,4,24h) - 0 -
Eicosane 1.35 1 P.a (2h) - 0 -
Epicedrol 8.16 1 S.a (24h) - 0 -

Ethyl butanoate - 0 - 5.53 ± 6.07 9
E.c (24h), S.a (4,24h) 

, P.a (4,24h), A.b 
(4,24h), K.p (2,4h)

Heptadecane 4.04 ± 2.13 2 E.c (2,4h) 7.47 ± 4.15 3
S.a (2h), P.a (2h), A.b 

(2h)

hexadecane 5.13 ± 2.81 8
A.b (2,4h), K.p (2,4h), 
S.a (2,4,24h), P.a (24h)

- 0 -

Indole 1.53 ± 1.28 8
A.b (4,24h), K.p (2,24h), 

E.c (2,4h), S.a (4,24h)
28.51 ± 44.65 10

A.b (2,24h), P.a 
(24h), K.p (4,24h), 
E.c (2,4,24h), S.a 

(2,4h) 

Indolizine 1.15 ± 0.65 7
P.a (24h), A.b (4,24h), 

K.p (2h), E.c (24h), 
P.a(2,4h)

- 0 -

Iisocyanomethyl Benzene 1.21 ± 0.79 3
A.b (4h), S.a (4h), P.a 

(2h)
- 0 -



12

Classification of pathogenic bacteria based on VOCs profiling.

Cell Mol Biol (Noisy le Grand) 2018 | Volume 64 | Issue 9

Najmeh Karami et al.

acetate. The VOCs released solely by standard P. ae-
ruginosa were 2-acetyl-1-pyrroline, isopentyl acetate, 

myrcene and thiophene (Table 2). Some compounds 
such as 2-ethenyl-6-methyl-pyrazine and heptadecane 

Isopentyl acetate - 0 - 1.47 1 P.a (24h)

Levomenthol - 0 - 2.3 ± 1 5
P.a (24h), A.b (4,24h), 

S.a (4,24h)
limonene 1.88 ± 0.64 3 P.a (2,4,24h) - 0 -

Longifolene 0.66 ± 0.33 6
P.a (4h), A.b (2,4h), K.p 

(2,4,24h)
2.29 ± 1.06 4

K.p (2,4,24h),        S.a 
(2h)

Menthone 1.91 ± 1.39 2 K.p (2,4h) - 0 -
Methyl isopropyl Hexenal - 0 - 1.71 1 K.p (24h)

Myrcene 1.94 1 P.a (2h) - 0 -

Naphthalenol 1.3 ± 0.83 5
P.a (4,24h), A.b (2h), K.p 

(24h), S.a (24h)
4.89 ± 3.67 3

A.b (2h), E.c (2h),
P.a (2h)

Nonadecane 1.44 ± 0.84 6
P.a (2,4h), A.b (2h), E.c 

(2,4h), S.a (4h)
- 0 -

o-isopropylanisol 1.07 ± 0.54 8
S.a (4,24h), P.a (24h), A.b 

(2,24h), K.p (2,4,24h),
- 0 -

Ocimene - 0 - 2.29 1 K.p (2h)

Octacosane 0.59 ± 0.1 2 E.c (2h), P.a (2h) 1.34 ± 0.53 6
K.p (2,4,24h), S.a 
(2h), P.a (2h), A.b 

(2h)

Octyl acetate 2.86 ± 2.8 4
A.b (2,4h), K.p (24h), 

S.a (4h)
4.43 ± 1.78 3 K.p (2,4,24h)

P-cymene 2.46 ± 0.92 2 K.p (2,4h) - 0 -
Pentadecane 0.74 ± 0.19 2 E.c (24h), P.a (4h) 0.81 ± 0.72 3 S.a (2,4h), K.p (2h)

Pentylhexyl Benzene - 0 - 0.46 1 A.b (2h)

Phthalic acid, butyl ester 1.54 ± 1.32 5
A.b (2,4h), S.a (2,4h), 

P.a (4h)
0.82 ± 0.75 4

K.p (4h), E.c (2h),
S.a (2h), P.a (2h)

Selinene 1.42 ± 0.66 8
P.a (4,24h), A.b (4h), K.p 

(4,24h), E.c (24h), S.a 
(2h)

- 0 -

Sesquiesabinene 4.59 ± 0.45 2 E.c (4,24h) - 0 -
Sesquiphellandrene 1.36 1 P.a (24h) - 0 -

Styrene 10.19 ± 7.13 15

A.b (2,4,24h), K.p 
(2,4,24h), E.c (2,4,24h), 

S.a (2,4,24h), P.a 
(2,4,24h)

- 0 -

Tetradecanal 0.86 ± 0.66 3
P.a (24h), A.b (4h), K.p 

(24h)
- 0 -

Tetradecane 3.52 ± 1.91 10
S.a (2,4,24h), P.a (4,24h), 

A.b (2,4h), K.p (2,4h), 
E.c (2h)

- 0 -

Tetradecanol 0.88 ± 0.66 4
S.a (24h), P.a (24h), A.b 

(2h), K.p (4h)
0.45 1 K.p (4h)

Thiophene - 0 - 8.84 ± 0.24 2 P.a (4,24h)
trans-Caryophyllene 8.48 1 K.p (24h) - 0 -

Tridecanol 2.32 ± 2.45 6
P.a (4h), E.c (2,4h),

S.a (2,4,24h)
4.1 ± 5.5 3 K.p (2,4,24h)

α-Acetoxydihydrocoumarin - 0 - 1.31 ± 0.69 3
E.c (2h), P.a (2h), A.b 

(2h)
α-Methyl ionone 1.35 1 K.p (2h) - 0 -

α-Terphenyl acetate 8.6 ± 1.61 2 P.a (4,24h) - 0 -

β-Santalol 0.93 ± 0.76 2 S.a (24h), P.a (4h) 2.85 ± 2.56 10

P.a (4,24h), A.b 
(4,24h), K.p (2,4h), 

E.c (4,24h), S.a 
(4,24h)

β-Sesquiphellandrene - 0 - 1.18 1 K.p (2h)
1 The mean of pick area% ±SD of VOCs in resistant strains. 2 It shows the frequency of VOCs producer among five-studied resistant strain in three 
periods of time (the maximum is 15 and the minimum is zero). 3 Resistant strains: E. coli (E.c), S. aureus (S.a), P. aeruginosa (P.a), A. baumannii 
(A.b) and K. pneumoniae (K.p). The production of VOCs in each one of these strain investigated in three periods of time (2, 4 and 24 hours). 4 The 
mean of pick area% ±SD of VOCs in standard strain. 5 It shows the frequency of VOCs producer among five-studied standard strain in three periods 
of time (the maximum is 15 and the minimum is zero). 6 Standard strains: E. coli (E.c), S. aureus (S.a), P. aeruginosa (P.a), A. baumannii (A.b) and 
K. pneumoniae (K.p). The production of VOCs in each one of these strain investigated in three periods of time (2, 4 and 24 hours).
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were produced in greater amounts by standard P. ae-
ruginosa than by the other studied bacteria such as A. 
baumannii and E. coli. 

The VOCs produced exclusively by resis-
tant A. baumannii were 1-(phenylethyl)-pyrrol, 
3-(3,3-dimethylbutyl)-cyclohexanone, aromadendrene, 
benzaldehyde, decane, 2,5-dimethyl pyrazine, dimethyl 
cyclo hexa-1,3 dine and dodecenol. The VOCs pro-
duced exclusively by standard A. baumannii were neryl 
acetate, 2-acetyl-1-pyrroline, pentylethylpyrol and pen-
tylhexyl benzene (Table 2).

The VOCs produced exclusively by resistant K. 
pneumoniae were 1-decene, 1-decyne, 1-methyl-4-(1-
methylethyl)-cyclohexanol, 2-nonanone, 2-tridecanone, 
2,5-dimethyl pyrazine, 3-decen-1-ol, 3-undecanone, 
3-undecene-2-one, menthone, p-cymene, trans-caryo-
phyllene and α-methyl ionone. The VOCs produced 
only by standard K. pneumoniae were 2,6-bis(1,1-
dimethylethyl)-4-methyl-phenol, 2-methyl-2-undec-
anethiol, 5.5-dodecadinyl-1,12-diol, ocimene and 
β-sesquiphellandrene (Table 2).

Differences between standard and resistant strains 
of each species

Comparison of all volatile compounds produced by 
the resistant and standard strains of each species was 
done using the Mann-Whitney test. The results present-
ed a significant difference (p < 0.05) between resistant 
and standard strains of E. coli, P. aeruginosa, A. bau-
mannii and K. pneumoniae for VOC production. No sig-
nificant difference (p > 0.05) occurred between resistant 
and standard strains of S. aureus (Table 3). 

Total VOCs amounts produced by resistant or stan-
dard bacterial groups in different times

Comparison of the total VOCs production by two 
groups was done at three-time intervals (2, 4 and 24 
h) using Mann-Whitney test (resistant strains are pre-
sented in Figure 2 and standard strains are presented in 
Figure 3). No significant difference (p >0.05) existed in 
the total amount of released VOCs at three time periods 
by resistant (Figure 2) and standard bacteria (Figure 3).

Discussion

While different types of bacteria have different 
metabolisms (32) and various VOCs are produced by 
them (33-34), also they have some common VOCs due 
to the presence of some common biochemical cycles 
(21). Changes in metabolisms could alter VOCs and it 

may be possible that modification of susceptibility to 
antibiotics could result in some changes in bacterial 
metabolism (35) and VOC profile of bacteria. In order 
to discriminate between standard and resistant strains 
of some pathogenic bacteria, in the present study, the 
VOCs of E. coli, S. aureus, P. aeruginosa, A. baumannii 
and K. pneumoniae were studied.

Groups
Resistant Standard P-value3

Bacteria Mean ± SD1 N2 Mean ± SD1 N2

E. coli 3.64 ± 5.28 77 10.96 ± 29.66 27 <0.001
S. aureus 3.18 ± 4.58 92 5.88 ± 10.29 50 0.128

P. aeruginosa 3.15 ± 4.83 92 6.43 ± 6.71 46 <0.001
A. baumannii 2.81 ± 3.84 104 6.45 ± 8.19 46 0.001

K. pneumoniae 2.95 ± 5.88 103 3.33 ± 4.27 87 0.003
1 The mean of all VOCs produced in three time intervals ±SD. 2All of identified compound 
types in 3 different culturing times. 3 P-value are based on Mann-Whitney Test.

Table 3. The comparison between resistant and standard bacteria in VOCs production.

Figure 2. The comparison (Mann-Whitney test)  among resistant 
strains of E. coli, S. aureus, P. aeruginosa, A. baumannii and K. 
pneumoniae in VOCs production at 2, 4, and 24 hours intervals. 
The Production of VOCs had no significant difference among these 
five resistant bacteria at three periods of time (P-value>0.05).

Figure 3. The comparison (Mann-Whitney test) among standard 
strains of E. coli, S. aureus, P. aeruginosa, A. baumannii and K. 
pneumoniae in VOCs production at 2, 4, and 24 hours intervals. 
The Production of VOCs had no significant difference among these 
five standard bacteria at three-time intervals (P-value>0.05).
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Two criteria were chosen for discrimination between 
resistant and standard strains: uniqueness of produced 
VOCs or the abundance of some common compounds 
which have been produced in much higher amount in 
some strains. Also, comparison was made between the 
mean of total peak area percentage (for 2, 4 and 24 h 
cultures) of each resistant or standard strain using 
Mann-Whitney test. It was found that resistant strains 
of E. coli, P. aeruginosa, A. baumannii and K. pneu-
moniae produced significantly higher amount of VOCs 
than their corresponding standard strains. This diffe-
rence was not significant between standard and resistant 
S. aureus. It is possible that by improving the extraction 
conditions of the VOCs or increasing culturing time, a 
significant difference between the standard and resistant 
strains of S. aureus could be obtained. In overall diver-
sity of VOCs and average of VOC, the amounts were 
higher in the resistant group compared to the standard 
one. The VOCs produced exclusively by each strain are 
listed in the results section.

No significant difference existed in the total amount 
of VOCs production at different culturing time (2, 4 and 
24 h) in the two studied groups of bacteria. It is most 
likely that all VOCs samples have been extracted and 
assessed after reaching logarithmic phase of growth. 
These results have been achieved in vitro, and in vivo 
study should be done using volunteers exhale samples 
for studying real bacterial infection VOCs. 

According to the results of the current study, all of 
the assessed bacterial strains produced unique VOCs 
which could be applied as diagnostic markers. These 
results are in accordance with the other reported studies 
which mentioned the production of specific VOCs by 
bacterial species (18, 36-39). 

Such data can be used to design an accurate diagnos-
tic method. However there are some discrepancies in the 
reported studies regarding VOCs of even one bacterial 
species (10, 15, 40). Assessment of different bacterial 
strains of one species (23), application of different VOC 
extraction methods (30), and the use of different tech-
niques for detection of the extracted VOCs can affect 
the quality and quantity of the identified VOCs (23). 
In this study, only two strains of 5 important human 
pathogenic bacteria were evaluated and it should be 
mentioned that for obtaining more accurate data, more 
strains must be assessed. Certainly, the examination of 
multiple species from prevalent pathogenic bacteria can 
provide the researchers with more precise information 
about the pattern of unique bacterial VOCs. On the 
other hand, evaluation and optimization of extraction 
methods of VOCs besides comparison of different ana-
lytical chemistry methods could be helpful in finding 
species specific biomarkers which could discriminate 
between standard and resistant bacteria. 

To the best of our knowledge, this is the first study 
to compare the VOCs produced by resistant A. bauman-
nii and K. pneumoniae with their standard strains. The 
study demonstrated that resistant strains of bacteria pro-
duced different VOCs than their standard strains. 

Susceptible-resistant classification of bacteria by 
using VOC analysis could serve as a fast and non-inva-
sive approach for the diagnosis of respiratory tract infec-
tions in humans. Moreover, the use of these biomarkers 
for the detection of pathogenic microorganism can be 

an excellent alternative to the present time consuming 
diagnostic methods.
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